Summary of space weather worst-case environments (revised edition)

Version 3.3: 9 February 2018, coordinated by Mike Hapgood (<u>mike.hapgood@stfc.ac.uk</u>) on behalf of the UK Space Environment Impacts Expert Group

Scope of this document

Space weather may be described as disturbances of the upper atmosphere and near-Earth space that disrupt a wide range of technological systems – and, in a few cases, poses a direct threat to human health. The systems at risk are very diverse and include power grids, many aspects of spacecraft and aircraft operations, many types of radio communications and control systems. This note lists a number of these different systems and outlines what we currently know of:

- The space weather environment parameters that best summarise the threat to those systems
- A reasonable worst case for those parameters, together the quality of the knowledge underpinning that estimate of the worst case and the formal provenance of that knowledge, e.g. in the peer reviewed literature.
- What can be done to improve the quality of that knowledge
- Other useful information

This information is presented in a series of tables below – with each table focusing on a specific class of space weather threat to each particular system.

Caveats

- 1. This is a revision of the summary published in May 2016 (http://tinyurl.com/ydy8lu5p). The changes reflect advances in understanding over the past three years, e.g. the growing focus on the geoelectric field as a critical parameter in assessing space weather impacts on power grids; the growing range of studies of the GIC risk to power grids in UK and similar regions (Ireland, southern Scandinavia, Canada and New Zealand); the recognition that high-energy electrons can damage electronic systems on satellites, including solar arrays; the substantial progress in quantifying the likelihood of intense radiation and charging events in space, and of radiation events in the atmosphere, ... [any more?]
- 2. While this document provides separate descriptions of different space weather risks, it must be remembered that many of these different risks will present themselves close together in time because they have a common origin in phenomena on the Sun. The associations between the different risks are illustrated in the figure at the end of this document.
- 3. This document focuses on the environmental aspects of space weather and does not discuss measures that can be taken to provide resilience against space weather, e.g. combined use of complementary technologies with different responses to space weather.

Contributors

Members of the UK Space Environment Impacts Expert Group: Mike Hapgood (RAL Space) (Chair), Matthew Angling (U. Birmingham), Gemma Attrill (DSTL), Mario Bisi (RAL Space), Catherine Burnett (Met Office), Paul Cannon (U. Birmingham), Clive Dyer (U. Surrey), Mark Gibbs (Met Office), Richard Harrison (RAL Space), Colin Hord (CAA), Richard Horne (BAS), David Jackson (Met Office), Bryn Jones (Solarmetrics), Cathryn Mitchell (U. Bath), John Preston (Bath Spa U.), John Rees (BGS), Andrew Richards (National Grid), Graham Routledge (DSTL), Keith Ryden (U. Surrey), Rick Tanner (Public Health England), Alan Thomson (BGS), Jim Wild (Lancaster U.) and Mike Willis (UKSA).

Summary of environments

Target risk: Power grid	
Environmental risk parameter:	Traditionally assessed (due to broad time-span of geomagnetic records available) via time rate of change of magnetic field (dB/dt) , specified in nano-Tesla per minute). However, risk assessment can also focus on the geoelectric field, <i>E</i> , as the primary geophysical risk parameter. In the UK, E-fields are particularly spatially complex, due to the underlying geology and surrounding seas, and this contrasts with some continental-scale nations. In the UK both dB/dt and E-fields are relevant.
Rationale:	Risk at transformer level is ultimately determined by the size of geomagnetically induced currents (GIC) flowing into and out of the grid, via transformer neutral connections, GIC depends closely on E , which, in turn, is induced by dB/dt in the conducting Earth.
	dB/dt is therefore a key source of GICs and directly drives E. But E also partly depends on (local/regional) ground conductivity and GIC also partly depends on grid electrical resistances and connectivity (e.g. Watermann, 2007, Cagniard, 1953)
Suggested worst case:	For dB/dt , 5000 nT/min (one single event) is broadly consistent with the >95% upper confidence level in the Thomson et al (2011) 1-in-100 year scenario (the background level of the UK magnetic field is around 55,000 nT, for reference).
	Modelling work suggests a local peak geoelectric E field >20 V/km is typical of extreme event scenarios (e.g. 1 in 100 years or greater) in the UK (Beggan et al, 2013).
Worst case duration	Single event, or 'spike', of 1-2 minutes duration. Lesser spikes in geoelectric field and dB/dt (1-2 minutes each) will be observed throughout the extreme event duration (hours to days).
	Historical occurrences of $dB/dt > 500$ nT/min have been associated with enhanced risk to the UK grid (e.g. Erinmez et al, 2002)
Worst case spatial extent	Growing evidence that intense GIC events have spatial scales of a few hundred km at most (Ngwira et al., 2015; Pulkkinen et al., 2015). Thus a single event would cover much of the UK.

Target risk: Power grid	
Anticipated effects	 Tripping of safety systems potentially leading to regional outages or cascade failure of grid Transmission system voltage instability and voltage sag Possible premature ageing of transformers leading to decreased capacity in months/years following event (Gaunt, 2014). Damage, e.g. insulation burning, to a number of transformers, through transformer magnetic flux leakage.
	(NB replacement of a transformer can take 1 to 2 months if a spare is available elsewhere in the UK; and much longer if procurement of a new transformer is required. National Grid now hold an increased number of spares to account for this risk.)
Quality of case:	Kappenman (2006) paper: Based on single measurement of earth currents on railway circuit in central Sweden during May 1921. Calibrated by linear extrapolation from similar but smaller earth currents observed in Sweden during 2500 nT/min event in 1982.
	Thomson et al (2011) paper: Published extreme event value statistical analysis of 1982-2010 digital magnetometer data from northern Europe. Similar results obtained in extreme event value analyses for Canada (Nikitina et al., 2016) and northern Europe (Wintoft et al., 2016).
Provenance:	Peer-reviewed papers by Kappenman (2006) and Thomson et al. (2011).
	See also papers by Beggan et al (2013) and Kelly et al (2017) for UK hazard in terms of GIC and electric fields.

Target risk: Power grid	
How to improve case quality:	 NERC has funded a consortium project, Space Weather Impacts on Ground-based Systems (SWIGS), from 2017 to 2021, to advance our understanding of this space weather impact, e.g.: Further analysis of UK geomagnetic observatory data running from 1850s to 1982 (digitised paper records) and 1983-2012 (measured digital data) to determine spatial structure and correlations during extreme events. Better characterisation of UK ground conductivity to enable improved modelling of geoelectric fields Better understanding of the spatial and temporal scales of d<i>B</i>/d<i>t</i> arising from sub-storms Assessment of industry transformer dissolved gas analysis data will improve understanding of how space weather ages transformers Industry GIC measurements and their correlation with changes in the geomagnetic data would stimulate development and validation of models of the hazard. Characterisation of the spectrum of d<i>B</i>/d<i>t</i> and geoelectric field <i>E</i> during extreme storms, e.g. to determine magnitudes and numbers of peak and any lesser spikes
	Also consider the Applications Readiness Level approach outlined by the NASA Living-with-a-Star

Target risk: Power grid	
Other notes:	 The largest recorded disturbance of the last 40 years was around 2700 nT/min, measured in southern Sweden in 1982. The largest UK disturbance was 1100 nT/min in March 1989. Key impacts of 1989 storm on UK national grid were reported by Smith (1990). Modelled GIC and surface electric fields suggest a per substation GIC of 10s to 100s of amps and local peak electric fields of ~25 V/km for Carrington scale events (c. 1 in 200 years) is possible (e.g. Pulkkinen et al, 2015; Ngwira et al, 2013; Beggan et al, 2013; Kelly et al., 2017) Initial studies of GIC in the Irish power grid (which serves both Northern Ireland and the Irish Republic) have been published by Blake et al. (2017) Current studies on the New Zealand grid (Rodger et al., 2017; Divett et al., 2017; Mac Manus et al., 2017) may provide valuable insights for the UK grid, as it is an island nation with similar magnetic latitude. For context, the Dst index (an equatorial measure of the magnetospheric ring current) reached -589 nT in March 1989. The Carrington event has been estimated at -900 to -1760 nT (e.g. Cliver and Dietrich, 2013; Tsurutani et al, 2003), with a recurrence likelihood of 6-12% per decade (e.g. Riley, 2012; Love, 2012) and theoretical
	considerations suggest -2500nT as a maximum possible Dst (Vasyliunas, 2011)

Target risk: Satellite operation degradation (cumulative effect	s – electronic component ageing and solar array
Environmental risk parameter:	Solar proton fluence and energy spectrum. Radiation belt energetic electron fluence and energy spectrum. Particles in the energy range 1 to 10 MeV are the most relevant. Effects are usually measured by the equivalent damage fluence of 10 MeV protons or 1 MeV electrons, or by the Non Ionising Energy Loss (NIEL) in MeV/g or J/kg.
Rationale:	Loss of electrical power from solar arrays is caused by displacement damage which is related to fluence accumulated. Depending on orbit, energetic electrons can be at least if not more important than protons.
Suggested worst case:	Protons, >1 MeV (for solar array damage): 1.3×10^{15} m ⁻² ; Protons, >30 MeV (for ageing of internal components): 1.3×10^{14} m ⁻² both from Xapsos et al., 1999 & Xapsos et al., 2000 Electrons: as for internal charging. See the extensive discussion below showing how the worst case varies with type of orbit (GEO, MEO and LEO) and location around that orbit in the case of GEO. (N.B. see the glossary for an explanation of orbit acronyms.)
Worst case duration	 Protons: Single event lasting 2 days or series of events lasting 1 week. Electrons: one week enhancement (see discussion under internal charging) For worst case a severe electron enhancement would follow after the severe proton event (Ryden et al., 2008), e.g. associated with the arrival at Earth of high-speed solar wind/CME.
Worst case spatial extent	Most satellite orbits are exposed; the magnetosphere will provide shielding from solar energetic particles for some orbits, especially equatorial LEO. Electrons dominate this impact for MEO satellites, and have an impact comparable with solar protons for GEO satellites.
Anticipated effects	Premature ageing of spacecraft electronic components, including solar arrays, leading to decreased capacity in years following event and/or reduced lifetime.

Target risk: Satellite operations – electronic component ageing and solar array degradation (cumulative effects)	
Quality of case:	We refer to ECSS-E-ST-10-04C for our current worst case event which is based on extrapolating existing models. Note that recent work by Cliver and Dietrich (2013) estimates that the Carrington event was most likely a factor 2 more intense than any event of the space age but with considerable uncertainty around this value. The 1-sigma uncertainty range spans been a factor 20 higher than any space age event, and a factor 5 lower than any such event. Hence it is still very reasonable to consider a worst case event 4 times higher than any space age event as an estimate for 1 in 100 year event.
Provenance:	ECSS-E-ST-10-04C standard. Also papers by Xapsos et al. (1999), Xapsos et al. (2000) and Cliver and Dietrich (2013).
How to improve case quality:	• Continue to monitor work on proxy data such as ¹⁴ C and ¹⁰ Be studies (Miyake et al, 2012; Mekhaldi et al., 2015), especially efforts to derive energy spectra and to improve time resolution of historical events, such 774AD.
Other notes:	Damage depends on energy spectrum. Internal components suffer more from hard spectra. For solar cells, damage is more severe for soft spectra. Further investigation of models is needed, e.g. SAPPHIRE (Jiggens et al, 2018).

Target risk: Satellite operations	s – SEE/control
Environmental risk parameter:	Solar energetic proton flux and fluence (> 30 MeV). Heavy ions also contribute to SEEs and can double the rates calculated from protons alone (Dyer et al., 2005). In addition, heavier ions can give hard failures not produced by protons.
Rationale:	The rate at which SEEs occur is related to this flux but depends on the hardness of the spectrum and the amount of shielding. Thus the frequency of service interruptions, and the size of operator workload, in any period, will also rise and fall with this flux. The fluence over a day is useful guide to total number of problems to be expected.
Suggested worst case:	Peak proton flux, >30 MeV: $4.4 \times 10^9 \text{ m}^{-2}\text{s}^{-1}$, 1-day proton fluence, >30 MeV: $9 \times 10^{13} \text{ m}^{-2}$, 1-week proton fluence, > 30 MeV: $1.7 \times 10^{14} \text{ m}^{-2}$ all with energy spectrum as in October 1989 or August 1972. Based on values from Creme96 (Dyer et al., 2004) and multiplied by four to estimate the 1-in-150 year event. Cliver and Dietrich (2013) estimate a fluence between 10^{13} and $10^{15} \text{ m}^{-2} > 30 \text{ MeV}$ for Carrington event. For
	now rates can be doubled to allow for ions.
Worst case duration	1-2 days for each event, but there could be several lasting a week as in October 1989 and October 2003.
Worst case spatial extent	Most satellite orbits are exposed: the magnetosphere will provide shielding for some orbits, especially equatorial LEO.
	We do not consider the South Atlantic Anomaly here as that is a slowly varying feature that will cause SEEs when satellites cross that region, irrespective of solar events.
Anticipated effects	 High anomaly rates on spacecraft: High workload by spacecraft operators to restore nominal spacecraft behaviour Temporary reduction in capacity of spacecraft services Some potential for permanent loss of sub-systems and of whole spacecraft.
Quality of case:	Based on extrapolation from space age measurements. This may be supplemented in future by use of cosmogenic isotopes to estimate historical SEP events; this is an area of ongoing research.
Provenance:	Dyer et al., 2005; Cliver and Dietrich (2013).

Target risk: Satellite operations – SEE/control	
How to improve case quality:	Improved understanding SEP events as discussed
	above and inclusion of worst case fluences from ions
	and their Linear Energy Transfer (LET) spectra. Dyer
	et al (2005) shows that Creme96 is a reasonable worst-
	case LET spectrum for the space age, but 1-in-100
	year event might well be factor 4 worse as with the
	proton estimates.
Other notes:	Depends on energy spectrum of the particles. Probably
	most severe for intermediate hardness. Suggest use
	October 1989 or August 1972 to enable scaling from
	existing space standards- maybe by factor 4. Also need
	to assume worst case composition for heavy ions.

Target risk: Satellite operations – internal charging	
Environmental risk parameter:	Energetic electron flux (~0.5 to 10 MeV)
_	
	It is important to consider the electron spectrum. The
	electron flux >2 MeV is often used as the measure of
	risk. The minimum energy depends on the level of
	shielding around sensitive components. Significant
	flux >6 MeV has been observed by Van Allen Probes.
Rationale:	These very energetic electrons penetrate deep inside
	spacecraft. Thus electrical charge can accumulate in
	dielectric (electrically insulating) materials. If this
	accumulation becomes too large, the dielectric will
	breakdown resulting in an electrical discharge. This
	can (a) damage nearby spacecraft systems, and (b)
	generate false signals that cause the spacecraft to
	misbehave. The latter will drive up operator workload.

Target risk: Satellite operations – internal charging	
Suggested worst case:	This depends on electron energies and orbit location as follows (see the spatial extent section for how to adjust to other longitudes).
	Geosynchronous orbit:
	 1 in 100 year daily average flux of E > 2 MeV electrons at GOES West is 7.7x10⁹ m⁻²s⁻¹sr⁻¹ [<i>Meredith et al.</i>, 2015]. 1 in 100 year flux of electrons in the energy range 0.69-2.05 MeV at L* = 6.0 in the near equatorial region (-15° < magnetic latitude < 15°), representative of geosynchronous orbit ranges from 4.7x10¹⁰ m⁻²s⁻¹sr⁻¹MeV⁻¹ at 0.69 MeV to 1.6x10⁹ m⁻²s⁻¹sr⁻¹MeV⁻¹ at 2.05 MeV. A spectrum of worst cases is available at 10 energies in the range 0.69-2.05 MeV. [<i>Meredith et al.</i>, 2017].
	Middle Earth orbit (e.g. for GPS and Galileo):
	• 1 in 100 year flux of electrons in the energy range 0.69-2.05 MeV at $L^* = 4.5$ in the near equatorial region (-15° < magnetic latitude < 15°), representative of the peak fluxes encountered in GNSS type orbits, ranges from 1.5×10^{11} m ⁻² s ⁻¹ sr ⁻¹ MeV ⁻¹ at 0.69 MeV to 5.8×10^9 m ⁻² s ⁻¹ sr ⁻¹ MeV ⁻¹ at 2.05 MeV [<i>Meredith et al.</i> , 2017].
	 1 in 100 year daily average internal charging current, averaged along the orbit path, behind 1.5 mm of aluminium is 1.3 x 10⁻⁹ A m⁻² [Meredith et al., 2016a] which exceeds the NASA guidelines of 1 x 10⁻⁹ A m⁻² over a 10 hour period [NASA, 2011]
	Low Earth orbit: 800 km altitude.
	• 1 in 100 year flux of E >300 keV electrons shows a general decreasing trend with L*, ranging from ~ 10^{11} m ⁻² s ⁻¹ sr ⁻¹ at L* = 3.5 to 3x10 ⁹ m ⁻² s ⁻¹ sr ⁻¹ at L* = 8.0 [<i>Meredith et al.</i> , 2016b].
	NB. L* is the invariant coordinate developed by
· · · ·	Roederer (1970) for radiation belt studies.
Worst case duration	2-5 days

Target risk: Satellite operat	ions – internal charging
Worst case spatial extent	Peak fluxes vary with longitude around the geostationary ring, because magnetic latitude also varies around the ring. Worst case GOES $E > 2$ MeV flux above is for the GOES West location (135°W). The 1 in 100 year $E > 2$ MeV flux at the GOES East location (75° W) is a factor of 2.4 less than that at GOES West (Meredith et al., 2015). Using the AE8 model the flux at longitudes above UK and Europe is expected to be approximately 1.1 times greater than that at 135°W (GOES West). Note that higher fluxes than those over UK will exist from about 130°E to 230°E peaking at about 1.3 times those at GOES-
	West. For any given event, satellites in geosynchronous orbit will be most prone to radiation damage when they are located near the magnetic equator and least prone to radiation damage when they are located farthest from the magnetic equator. Geosynchronous satellites located near 20°E and 160° W will thus, on average, experience the largest fluxes, while those located near 110° E and 70° W will, on average, receive the least (Meredith et al., 2015).
Anticipated effects	 High anomaly rates on spacecraft: High workload by spacecraft operators to restore nominal spacecraft behaviour Temporary reduction in capacity of spacecraft services
	Some permanent damage from electrostatic discharges is also possible
Quality of case:	Recent peer reviewed papers by Meredith et al, 2015, 2016a, 2016b and 2017 gives robust extremes. These fluxes are consistent with earlier theoretical estimates [Shprits, 2011; O'Brien et al, 2007].
Provenance:	Peer reviewed papers by Meredith et al (2015, 2016a, 2016b, 2017), O'Brien et al., (2007) and Shprits et al., 2011)

Target risk: Satellite operations – internal charging	
How to improve case quality:	 NERC has funded a consortium project, Rad-Sat, from 2017 to 2021, to advance our understanding of this space weather impact, e.g. To investigate the role of magnetosonic waves, hiss, transmitters and lightning generated whistlers
	 on the global dynamics of the radiation belts and develop state-of-the-art modelling and forecasting for space weather events To determine how wave-particle interactions depend on the time history of the solar wind driver so as to significantly improve forecasting models To investigate radiation belt dynamics during shock-driven severe space weather events and provide a new forecasting capability
Other notes:	Radiation-induced conductivity can help to mitigate internal charging by increasing the rate at which charge leaks out of dielectric materials in satellites (Ryden and Hands, 2017)

Target risk: Satellite operation	
Environmental risk parameter:	Electron flux (1 to 100 keV)
	It is important to consider the electron spectrum. The
	worst-case spectrum from SCATHA was mostly
	enhanced above the average between 20 - 100 keV.
Rationale:	The surfaces of objects in space always acquire some electrical charge. In strong sunlight, this is usually dominated by photoemission from the object, which stabilises the electrical potential at a few volts positive. But in regions of space containing hot plasmas, especially outside sunlight, the surface can go to a negative potential of several thousand volts. If this potential becomes too large it may trigger an
	electrical discharge. This can (a) damage systems on the spacecraft surface (e.g. solar arrays), and (b) generate false signals that cause the spacecraft to misbehave. The latter will drive up operator workload.
	 Surface charging often occurs: As a satellite passes out of eclipse into sunlight, due to change in currents to & from the spacecraft During substorms which inject typically 1 – 100 keV electrons across geosynchronous and medium Earth orbit, usually between midnight and dawn (O'Brien, 2009). During intense aurora caused by 1-10 keV electrons which affect satellites in polar low Earth
	orbits crossing the auroral regions Surface charging is determined by the flux of electrons in the hot plasma in these regions.
Suggested worst case:	Typically a peak electron flux of $10^{11} \text{ m}^{-2} \text{ sr}^{-1} \text{ s}^{-1} \text{ keV}^{-1}$ at 30 keV and 3 x $10^{10} \text{ m}^{-2} \text{ sr}^{-1} \text{ s}^{-1} \text{ keV}^{-1}$ at 100 keV where the SCATHA worst case flux exceeds the average most (Fennel et al., 2001) and also Mateo-Velez et al. (2017).
Worst case duration	Substorms causing plasma injections may last several mins after which the peak flux will decay. However, during active periods multiple substorms occur with an interval of one to a few hours between each substorm. Prolonged periods of multiple substorms can last for 10 days or more during high speed solar wind streams.
Worst case spatial extent	Needs further study
Anticipated effects	 Permanent damage to spacecraft systems, particularly solar arrays. High anomaly rates on spacecraft: High workload by spacecraft operators to restore nominal spacecraft behaviour Temporary reduction in capacity of spacecraft services
Quality of case:	Surveys of publicly available measurements.

Target risk: Satellite operations – surface charging	
Provenance:	Analysis of GEO data (Fennel et al., 2001; Mateo-
	Velez et al., 2017)
How to improve case quality:	Further survey of available datasets & the published
	literature, especially new papers that address the issue.
Other notes:	

Target risk: Satellites – Therm	ospheric Drag
Environmental risk parameter:	Change in thermospheric neutral density at LEO
	satellite orbit altitude
Rationale:	Density changes affect satellite orbital determination,
	since they lead to changes in the drag on the satellite
Suggested worst case:	Relative density enhancements of up to 750%, and
	absolute density changes of up to $4 \times 10^{-12} \text{ kg m}^{-3}$ (at
	490 km altitude).
Worst case duration	Large changes described above take place within 1 day.
Worst case spatial extent	Effects likely all over the world. Further study needed to assess regional responses. Oliveira et al. (2017) show how thermospheric response to geomagnetic activity can take several hours to spread from high to low latitudes.
Anticipated effects	• Satellite loses altitude, or satellite raising
	manoeuvres need to be carried out to counteract
	this. Impacts depend on size of the satellite.
	Nwankwo et al (2015) showed that for selected
	typical LEO satellites, the altitude may drop by 48-
	62 km a year at solar maximum, and by 25-31 km
	at solar minimum. NOAA SWPC estimated the
	ISS would drop by 200 m in a day during the
	October 2003 Halloween storm, but by 45 m in a
	 day on a non-stormy day during the same month. Issues with orbital determination – in extremis
	• Issues with orbital determination – In extremis satellites have crashed into each other
	 Tracking of space debris is made significantly
	more problematic
Quality of case:	Worst case based on observations from 2003 to 2010.
Provenance:	Krauss et al (2015) – density fluctuations observed by
	GRACE during geomagnetic storms from 2003-2010.
	Sutton et al (2005) - density fluctuations in October
	2003 geomagnetic storms.
	Pawlowski and Ridley (2008) – thermospheric
	response to solar flares.
	Oliveira et al. (2017) – shows how thermospheric
	response spreads from high to low latitudes following
	geomagnetic activity
How to improve case quality:	Further exploitation of satellite accelerometer data,
0.1	including assimilation of such data into models
Other notes:	Density changes of ~20% can also occur during small
	geomagnetic storms and solar flares. Integrated effect
	of many such small storms, or flares, on satellite orbit
	may also need to be examined. Impact of anticipated
	effects is likely to increase in future due to increasing space debris and proposed constellations of hundreds
	of nanosatellites. We need to better understand
	implications for satellite survey and tracking.
	Implications for satellite survey and tracking.

Target risk: Terrestrial Electro	
Environmental risk parameter:	Cosmic ray neutron flux (>10 MeV) at Earth's surface
Rationale:	Secondary neutrons are dominant source of single
	event effects below 60000 feet and are produced when
	energetic protons and ions from space interact with
	nitrogen and oxygen nuclei in the atmosphere. The
	flux > 10 MeV is used in the standards but allowance
	must be made for lower energy neutrons, especially
	thermal. Note that energetic protons can contribute
	significantly while for new technologies stopping
	protons and muons are increasingly significant.
Suggested worst case:	For a 1-in-150 year event, 200-fold increase in surface
	radiation environment for latitudes such as London,
	UK. This is based on a recent assessment of extreme
	events by Dyer et al. (2017). Using both the ground
	level radiation monitor records and proxies such as ${}^{14}C$
	and ¹⁰ Be, this assessment suggests to use a 1-in-150
	year worst case that is 4 times more intense than the
	largest event observed with instruments (a 50-fold
	increase measured at Leeds on 23 Feb 1956).
	For 1 in 150 year event, see level neutron fluxes > 10
	For 1-in-150 year event, sea level neutron fluxes > 10 MeV are:
	• $2.1 \times 10^7 \text{ m}^{-2} \text{hr}^{-1}$ at London
	• 1.1x10 ⁸ m ⁻² hr ⁻¹ for North of Scotland
	For higher latitudes there is assentially no
	For higher latitudes there is essentially no geomagnetic shielding.
	geomagnetic sinclung.
	This assessment also suggests the 1-in-1000 year
	worst case would be a 1000-fold increase in the
	surface radiation environment at London and 5000-
	fold for the North of Scotland.
	Tota for the North of Scotland.
	For more detail see the tables in Dyer et al. (2017)
Worst case duration	Timescales of events range from 1 to 12 hours but note
norst cuse unrunon	that for impulsive events such as Feb56, nearly all the
	fluence (77%) arrives in the first hour and fluxes
	during the first few minutes are a factor 3 higher.,
Worst case spatial extent	Considerable variations across the world due to
	radiation from the Sun being directed by the
	interplanetary magnetic field, and the shielding effects
	of Earth's magnetosphere. The former can lead to
	variations with longitude, whilst the latter can lead to
	greater fluxes at high latitudes – but with marked
	differences between the northern and southern poles. If
	a ground level enhancement occurs during an extreme
	geomagnetic disturbance, such as that during the
	Carrington event, low latitudes could be severely
	exposed.

Target risk: Terrestrial Electronics	
Anticipated effects	Greatly enhanced error rates in unprotected digital electronic systems, also potential for damage to such devices and burnout in high voltage devices (see Box 2 in Cannon et al. (2013) and Dyer et al. (2017)).
Quality of case:	This is based on observations of the ground level enhancement (GLE) radiation event of 23 Feb 1956 and comparison with other GLEs in the instrumental and proxy records, as consolidated by Dyer et al., 2017.
Provenance:	Marsden et al (1956), Quenby and Webber (1959), Rishbeth, Shea and Smart(2009), Tylka and Dietrich (2009), Mekhaldi et al. (2015), Dyer et al. (2017).
How to improve case quality:	Further work on cosmogenic nuclides and co- ordinated observations of future GLEs across a wide range of locations and altitudes.
Other notes:	Feb 56 is hardest event observed (since observations commenced in 1942). The Carrington event itself does not appear to have been a hard event as it is not seen in the cosmogenic nuclide records. However, the analysis by Dyer et al. shows that events of 4xFeb56 occur approximately every 150 years on average. Evidence from AD774 event suggests that that event was very hard. Effects are probably worst for short events that give high rates. Event durations are typically 1-12 hrs. Dyer et al. (2017) propose adoption of a new space weather scale for atmospheric radiation with February 1956 fluxes as the basepoint for the scale and with scaling measurements obtained from ground-based neutron monitors. This would complement the NOAA S scale for space radiation and would be far more appropriate for atmospheric radiation impacts. The low energy neutron spectra at ground level are greatly influenced by local conditions such as soil moisture and precipitation. This can be important if components are sensitive to low energy neutrons (< 10 MeV) and/or to thermal neutrons.

Target risk: Wireless systems	
Environmental risk parameter:	Solar radio flux
Rationale:	The Sun can produce strong bursts of radio noise over
	a wide range of frequencies from 10 MHz to 10 GHz.
	These bursts may interfere with wireless systems
	operating at these frequencies if the solar signal is
	stronger than the operational signal.
Suggested worst case:	10^{-17} to 10^{-16} W m ⁻² Hz ⁻¹ over a broad range of
	frequencies.
Worst case duration	1 hour
Worst case spatial extent	Whole dayside of the Earth.
Anticipated effects	Loss of signal on wireless systems, especially GNSS
	and including mobile phones.
Quality of case:	Statistical studies show that radio bursts up to 10^{-17} W
	m^{-2} Hz ⁻¹ are fairly common. A burst of 10^{-16} W m^{-2} Hz ⁻
	¹ was recorded in Dec 2006 and disrupted GNSS
	systems across the sunward side of the Earth.
Provenance:	Statistics in peer-reviewed paper by Nita et al. (2004).
	Dec 2006 event in peer-reviewed paper by Cerruti et
	al. (2007).
How to improve case quality:	Conduct extreme value analysis to determine
	reasonable worse case and assess in light of wireless
	system operating parameters.
Other notes:	The lower threshold of 10 ⁻¹⁷ W m ⁻² Hz ⁻¹ should be
	detectable by mobiles, but the likely impact is small.
	Impact on mobiles will be greatest at sunrise/sunset
	when Sun in line of sight of base station antenna
	beams. There are no reports of impacts on mobiles
	from the large radio burst in Dec 2006. However, the
	terminator (sunset/sunrise line) on Earth's surface did
	not cross any significant inhabited areas, so the
	potential for interference with base stations was not
	tested.

Target risk: GNSS – Total Electron Content (TEC) correction	
Environmental risk parameter:	TEC and related gradients
Rationale:	The ionospheric range correction on GNSS position and time estimates is directly proportional to TEC, e.g. an uncorrected TEC value of 6×10^{16} m ⁻² gives a range correction of 1m.
	Most contemporary accurate GNSS systems use augmentation systems (e.g. EGNOS), that measure TEC and send corrections to receivers. This assumes that TEC does not change significantly between the measurement and delivery of the correction.
	If the spatial or temporal rate of change of TEC is too large, the corrections will be inaccurate (as happened over the US during the October 2003 event).
Suggested worst case:	Defining a TEC of 1×10^{16} m ⁻² = 1TECu Vertical TEC: 500 TECu based on double the measured value of 250 TECu on 30 Oct 2003 (Mannucci, 2010).
	TEC spatial range gradient: 80 cm km ⁻¹ , based on double the measurements from (Datta-Barua, 2004) for the same event.
	TEC temporal range gradient of 30 cm s ⁻¹ , based on double the measurements from (Datta-Barua, 2004). for the same event
Worst case duration	Several days
Worst case spatial extent	Effects likely all over the world. Further study needed to assess regional responses.
Anticipated effects	Inaccurate TEC corrections, leading to errors in GNSS position and timing.
Quality of case:	Measurements are good. Extrapolation unsubstantiated.
Provenance:	Vertical TEC: (Mannucci, 2010) TEC spatial range gradient: (Datta-Barua, 2004). TEC temporal range gradient (Datta-Barua, 2004). Duration: Expert assessment.
How to improve case quality:	Real-time monitoring and modelling. NERC Knowledge Exchange Fellowship held by C Mitchell at Bath will create simulated TEC during extreme storm conditions, in a collaboration with G Attrill, DSTL.

Target risk: GNSS – Total Electron Content (TEC) correction	
Other notes:	• Dual-frequency GNSS receivers have the potential to allow TEC corrections without need for
	augmentation or differential systems. However
	very few such dual-frequency GNSS receivers are in use for applications other than surveying.
	• Vertical TEC values given – multiply by 2-3 to adjust for oblique paths and avoid using low-elevation satellites
	 Emerging evidence that position errors in consumer-level GNSS receivers can lead to
	dangerous situations (Scoles, 2017)

Target risk: GNSS – effects of I	onospheric Scintillation
Environmental risk parameters:	Scintillation is caused by small scale irregularities which can be quantified by the strength of turbulence parameter, CkL.
	Amplitude scintillation is often quantified by the S4 index.
	Phase scintillation often quantified by the sigma-phi index
Rationale:	 Small-scale spatial irregularities in the ionosphere can diffract and refract radio signals. This causes rapid fluctuations in signal intensity and phase, known as amplitude and phase scintillation respectively. Amplitude scintillation can reduce radio signal intensity below a receiver's lock threshold, thereby causing loss of signal on GNSS and other satellite links). Phase scintillation may lead to cycle slips and loss of lock for receivers as they track the signal.
Suggested worst case:	Scintillation which is characterised by a Rayleigh intensity distribution and random phase.
Worst case duration	Several days, intermittent
Worst case spatial extent	Global. Storm induced ionospheric scintillation covering all high and mid geomagnetic latitudes, and low latitude scintillation effects also possible.
Anticipated effects	Widespread loss of GNSS signals for location and timing – with economic impacts on UK as studied by London Economics (2017).
Quality of case:	Studies by international Satellite-based Augmentation Systems (SBAS) Ionospheric Working Group with representatives from the European, Japanese and US systems (EGNOS, MSAS and WAAS).
Provenance:	Peer-reviewed papers by Doherty (2000) and Skone (2000)
How to improve case quality:	 Better understand how intermittent reception of signals impacts GNSS applications GNSS navigation and timing receivers have specific vulnerabilities that relate to the internal receiver configuration. Simulation testing of the effects of ionospheric scintillation on specific receiver configurations is necessary to understand the true impacts of space weather events (Pinto Jayawardena et al., 2017).
Other notes:	Test equipment for GNSS scintillation has been developed through NERC Knowledge Transfer Partnership at Spirent Communications/University of Bath.

Target risk: Satcom - effects of Ionospheric Scintillation	
Environmental risk parameters:	Scintillation is caused by small scale irregularities which can be quantified by the strength of turbulence parameter, CkL.
	Amplitude scintillation is often quantified by the S4 index.
	Phase scintillation often quantified by the sigma-phi index
Rationale:	 Small-scale spatial irregularities in the ionosphere can diffract and refract radio signals. This causes rapid fluctuations in signal intensity and phase, known as amplitude and phase scintillation respectively. Amplitude scintillation can reduce radio signal intensity below a receiver's lock threshold, thereby causing loss of signal on satellite links. Phase scintillation may lead to loss of lock for receivers as they track the signal. Both effects are significant at frequencies below 3 GHz.
Suggested worst case:	Scintillation which is characterised by a Rayleigh intensity distribution and random phase.
Worst case duration	Several days, intermittent
Worst case spatial extent	Global. Storm induced ionospheric scintillation covering all high and mid geomagnetic latitudes, and low latitude scintillation effects also possible.
Anticipated effects	Potential loss of communications links for L-band, UHF and VHF systems that route signals via satellites.
Quality of case:	Tbd
Provenance:	?
How to improve case quality:	 Calculation / simulation of simulation impacts on link budgets Understand when and how intermittent reception of signals impacts satcom applications
Other notes:	 L band & UHF satcom systems are potentially vulnerable but detailed impact will depend on a detailed engineering assessment against the worst case conditions specified here. Such assessment is outside the scope of this document. AIS maritime reporting via VHF satcom (i.e. out of sight of land) is potentially vulnerable, but requires detailed engineering assessment, as above (and taking account of what may be low data rates). Satcom systems at frequencies above 3 GHz, such as C, X, Ku and Ka bands, do not suffer significant impacts from ionospheric scintillation.

Target risk: Blackout of high fr	requency radio communications
Environmental risk parameters:	Absorption of high-frequency (3-30 MHz) radio waves
	in the upper atmosphere
Rationale:	Ionisation in the upper atmosphere at altitudes of 60 to 90 km ("D region") will absorb HF radio waves, so they cannot reach the higher ionospheric layers that can reflect these waves. In such "blackout" conditions, HF radio cannot be used for over-the-horizon radio communications.
Suggested worst case:	Total blackout of HF radio frequencies
Worst case duration	 Two or three hours during daytime at low- & midlatitudes (when the absorption is caused by a large solar flare) Several days at high latitudes (when the absorption is caused by a strong solar energetic particle event – sometimes termed a polar cap absorption event)
Worst case spatial extent	 All low- & mid-latitude regions on the dayside of the Earth (when the absorption is caused by a large solar flare) High latitude regions (when the absorption is caused by a strong solar energetic particle event)
Anticipated effects	Loss of operation of HF radio systems
Quality of case:	Long-recognised issue with heritage back to 1930s (flare-induced effects) and the 1950s (SEP-induced effects).
Provenance:	Halcrow and Nisbet (1977), Jones and Stephenson (1975), Lockwood (1993), Rogers and Honary (2015), Rogers et al (2015), Schumer (2009), Sauer and Wilkinson (2008), Warrington et al (2012).
	Also for commercial aviation operations: ICAO (2015),
How to improve case quality:	Increase international collaboration for collection of riometer measurements. Additional collaboration with airlines and ATC to identify operational and safety impacts that will validate improved ionospheric models for forecasting loss of HF.

Target risk: Blackout of high	h frequency radio communications
<i>Other notes:</i>	In trequency radio communicationsFeasibility Study involving University of Leicester, Lancaster University, Met Office and SolarMetrics: HARP - High-latitude Aeronautical Radio Prediction Service is a first step towards an operational forecasting service.There is a strong suggestion by many in aviation that the need for HF comms will disappear because of the use of datalink systems and Satcom transmissions. Datalink does overcome some of the ATC difficulties for airspace management caused by disruption or loss of HF in the relevant regions, but in most emergency situations a voice call on HF is the quickest and safest option. The use of Satcom is not a viable tool for use by ATC to manage and control safe separations between multiple aircraft in normal or emergency situations (regardless of SW activity). Therefore, it is considered that the use of HF will remain for at least
	the next 10-15 years.

-

Target risk: Railway signal sys	Target risk: Railway signal systems	
Environmental risk parameter:	Rate of change of magnetic field $(dB/dt, specified in)$	
_	nano-Tesla per minute) – as for power grids.	
Rationale:	Track circuits are widely used to detect the presence of	
	trains on specific sections of railway track. The	
	presence of the train changes the flow of electricity in	
	the circuit, compared to an unoccupied track. If GIC	
	from space weather also enters a track circuit, it may confuse the operation of that circuit.	
Suggested worst case:	Unknown	
Worst case duration	Single event, or 'spike', of 1-2 minutes duration.	
	Lesser spikes in dB/dt (1-2 minutes each) will be	
	observed throughout the extreme event duration (hours	
	to days).	
Worst case spatial extent	Growing evidence that intense GIC events have spatial	
_	scales of a few hundred km (Ngwira et al., 2015;	
	Pulkkinen et al., 2015).	
Anticipated effects	Additional currents flowing in track circuits	
Quality of case:		
Provenance:		
How to improve case quality:	Needs better understanding of GIC impact on rail	
	systems including different types of track circuits.	
	Also analysis of databases of rail system anomalies.	
Other notes:	Space weather interference with track circuits has been	
	reported in Sweden and Russia, e.g. see Eroshenko et	
	al., 2010.	
	Space weather risks to rail systems are gaining more	
	attention, e.g. an international workshop was held in	
	London in September 2015 (Kraussmann et al., 2015).	

Target risk: Aviation – avionics	5
Environmental risk parameter:	Neutron fluence > 10 MeV
Rationale:	Secondary neutrons are dominant source of single event effects below 60,000 feet. At altitudes above 60,000 feet ions make a significant contribution to SEEs and dose-equivalent for humans. The flux > 10 MeV is used in the standards but allowance must be made for lower energy neutrons, especially thermal,
	which can increase rates in certain components by a factor 10. Note that energetic protons can contribute significantly while for new technologies stopping protons and muons are increasingly significant.
Suggested worst case:	For a 1-in-150 year event, 4000-fold increase in radiation environment, compared to solar minimum conditions, at 40,000 feet (12 km) and high latitude. This is based on a recent assessment of extreme events by Dyer et al. (2017). Using both the instrumental record and proxies such as ¹⁴ C and ¹⁰ Be, this assessment suggests to use a 1-in-150 year worst case 4 times more intense than the 23 Feb 1956 event, which is calculated to have produced a 1000-fold increase for high geomagnetic latitudes (Dyer et al., 2017).
	For the 1-in-150 year event at 40,000 feet neutron fluxes > 10 MeV are: • 1.2x10 ¹⁰ m ⁻² hr ⁻¹ above London • 2.3x10 ¹¹ m ⁻² hr ⁻¹ above North of Scotland
	For higher latitudes there is essentially no geomagnetic shielding.
	For a 1 in 1200 year event, Dyer et al. (2017) suggests high latitude fluxes of 7.5 times worse than the above values for 1-in-150 years. For 1 in 10,000 years the factor increase is 12.5.
	For more detailed insights please see Tables 1 and 4 of Dyer et al. (2017).
	Fluxes are 3.6 times higher again at 60,000 feet and high latitude. Above this altitude ions must also be considered.
Worst case duration	Timescales of events range from 1 to 12 hours but note that for impulsive events such as Feb56, nearly all the fluence (77%) arrives in the first hour and fluxes during the first few minutes are a factor 3 higher.

Target risk: Aviation – avionics	
Worst case spatial extent	Considerable variations across the world due to radiation from the Sun being directed by the interplanetary magnetic field, and the shielding effects of Earth's magnetosphere. The former can lead to variations with longitude, whilst the latter can lead to greater fluxes at high latitudes – but with marked differences between the northern and southern poles. If a ground level enhancement occurs during an extreme geomagnetic disturbance, such as that during the Carrington event, low latitudes could be severely exposed.
Anticipated effects	High upset rates and possible high failure rates in inadequately protected digital avionic systems
Quality of case:	This is based on observations of the ground level enhancement (GLE) radiation event of 23 Feb 1956 and comparison with other GLEs in the instrumental and proxy records, as consolidated by Dyer et al. (2017).
Provenance:	Peer-reviewed papers by Dyer et al (2003), Dyer et al (2007), Dyer et al. (2017), Lantos and Fuller (2003), Tylka and Dietrich (2009), Mekhaldi et al.(2015). 1956 observations in research note by Marsden et al (1956), Quenby and Webber (1959), Rishbeth, Shea and Smart (2009).
<i>How to improve case quality:</i>	The NOAA Solar Radiation Storm S-scale, derived from the GOES >10 MeV solar proton energy channel, was designed for warning of harmful increases in solar radiation during NASA astronaut EVA's. It is now recognised that the vast majority of these protons are not sufficiently energetic to reach commercial airline cruising altitudes and will not give harmful radiation increases to flight crews and passengers. Therefore the current S-scale is considered wholly inappropriate for use by airlines as an operational or duty of care decision-tool. Space weather events that produce significant solar proton fluxes with energies >400 MeV are required to yield increased flight doses and SEEs in avionics.
	by ground-based neutron monitors, to stimulate development and validation of improved models of radiation exposure. Further modelling of radiation in the upper atmosphere for UAVs, buoyant stratospheric balloons and space tourism. Determination of susceptibility of avionics equipment and systems. Consider susceptibility of new electronics to stopping protons and muons.

Target risk: Aviation -	- avionics
Other notes:	Assumes near worst case altitude (40,000 feet/12 km) and route (e.g. high latitude such as LHR-LAX or polar). Fluxes would be factor 3.6 worse at 60,000 feet and ions must be considered above this altitude. Any existing geomagnetic storm could expose lower latitude routes to similar fluxes. Duration is probably worst for short events that give high rates. Event durations are typically 1-12 hrs.
	Dyer et al. (2017) propose adoption of a new space weather scale for atmospheric radiation with February 1956 fluxes as the basepoint for the scale. This would complement the NOAA S-scale for space radiation and would be far more appropriate for atmospheric radiation impacts.

Target risk: Aviation – human	radiation exposure
Environmental risk parameter:	High radiation dose rates at aviation altitudes. Secondary neutrons are the main contribution below 60,000 feet but above this ions make a significant contribution to SEEs and dose-equivalent for humans.
Rationale:	 Air crew: are occupationally exposed. Airlines operate to a limit of 20 mSv per year and seek to keep doses below a constraint of 6 mSv per year. Pregnant air crew: airlines are expected to limit the dose received to 1 mSv, once they have been informed that their employee is pregnant. (In the US, the FAA guideline is 0.5 mSv in one month.) Passengers including frequent business fliers: not covered by legislation so no formal dose limits or constraints apply.
Suggested worst case:	 1 in 150 year event: 28 mSv, based on a recent assessment of extreme events by Dyer et al., 2017. Using both the instrumental record and proxies such as ¹⁴C and ¹⁰Be, this assessment suggests that the 1-in-150 year worst case would be 4 times more intense than the 23 Feb 1956 event, which is estimated to have produced a route ambient dose of 7 mSv at 40,000 ft on high latitude routes such as London to Los Angeles (Dyer et al., 2017). 1 in 1200 year event: 210 mSv, based again on the assessment by Dyer et al., 2017, which takes account of extreme events in the proxy record, such as the 774 AD event (Mekhaldi et al., 2015)
Worst case duration	For more details see Table 4 of Dyer et al. (2017) 1-12 hours for a single event, but perhaps longer in a sustained series of events with several large X-class flares and fast CMEs. Note that for impulsive events such as Feb56, nearly all the dose (77%) arrives in the first hour and dose rates during the first few minutes are a factor 3 higher.
Worst case spatial extent	Considerable variations across the world due to radiation from the Sun being directed by the interplanetary magnetic field, and the shielding effects of Earth's magnetosphere. The former can lead to variations with longitude, whilst the latter can lead to greater fluxes at high latitudes – but with marked differences between the northern and southern poles. Any existing geomagnetic storm could expose lower latitude routes to similar fluxes. Doses received by individuals are probably worst for short events that give high rates.

Target risk: Aviation – human	•
Anticipated effects	Aircrew: could exceed 6 mSv and airlines would seek to limit further doses by changes to flight duties. This may be logistically problematic.
	Pregnant crew: may exceed 1 mSv limit if they are still undertaking flight duties. However, airlines routinely change the flight duties of pregnant crew once they are notified of the pregnancy.
	Passengers : will need information on exposures received.
Quality of case:	This is based on observations of the ground level enhancement (GLE) radiation event of 23 Feb 1956 and comparison with other GLEs in the instrumental and proxy records, as consolidated by Dyer et al., 2017.
Provenance:	Papers by Dyer et al. (2007), Dyer et al. (2017), Lantos and Fuller (2003), and Tylka and Dietrich (2009). 1956 ground level observations in research note by Marsden et al (1956), Quenby and Webber (1959), Rishbeth, Shea and Smart (2009). 774 AD event: Mekhaldi et al (2015).
How to improve case quality:	The NOAA Solar Radiation Storm S scale, derived from the GOES >10MeV solar proton energy channel, was designed for warning of harmful increases in solar radiation during NASA astronaut EVAs. It is now recognised that the vast majority of protons in this channel are not sufficiently energetic to reach commercial airline cruising altitudes, and thus cannot give harmful radiation increases to flight crews and passengers. Therefore the current S scale is considered wholly inappropriate for use by airlines as an operational or duty of care decision-tool. SW events that produce solar proton energies >400MeV are likely to yield increased flight doses, but a new alerting scale based on this energy must also be correlated with ground-based neutron monitor data, and/or ideally with on board aircraft measurements.
	and by ground-based neutron monitors, to stimulate development and validation of improved models of radiation exposure.
	Better space-based solar proton data for energies > 400 MeV, such as on the new GOES satellites.
	International agreement is needed to determine the thresholds for advising restrictions on take-off, and advice on rerouting or changing altitude. This should also be related to the susceptibility of avionics.

Target risk: Aviation – human	radiation exposure
Other notes:	Assumes near worst case altitude (12 km) and route (e.g. high latitude such as London-Los Angeles or polar). However, a simultaneous geomagnetic storm could produce similar doses for lower latitude routes. Doses are probably worst for short events that give high dose rates and little time for avoidance. Longer duration events could affect more flights and/or expose more passengers.
	Dyer et al. (2017) propose adoption of a new space weather scale for atmospheric radiation with February 1956 fluxes as the basepoint for the scale. This would complement the NOAA S-scale for space radiation and be more appropriate for atmospheric radiation impacts.

-

Target risk: Public behaviour impacts	
Risk parameter:	TBD
Rationale:	Infrastructure failure following an extreme space weather event may result in behaviours such as public disorder or stockpiling that might be expected in a major crisis.
Suggested worst case:	Lack of public awareness/confidence combined with very severe event (widespread power blackouts, major interruptions to GNSS-based services).
Worst case duration	Several days?
Worst case spatial extent	All of UK. Similar problems in other affected countries.
Anticipated effects	 Rejection of scientific understanding in favour of conspiracy / rumour Reframing of the event with negative consequences for social cohesion Stockpiling (sometimes called 'panic buying') Millenarianism See Appendix 2 to this report for a detailed discussion
Quality of case:	Tbd
Provenance:	McBeath (1999), House of Lords Science and Technology Committee (2005), Kerr (2011), Sciencewise (2014), Preston et al. (2015),
How to improve case quality:	Tbd
Other notes:	Tbd

Glossary

Automatic Identification System, an automatic tracking system
used by shipping.
British Geological Survey
European Geostationary Navigation Overlay Service (European
SBAS)
Federal Aviation Administration
Geosynchronous orbit
Geomagnetically induced currents
Ground Level Enhancement
Global Navigation Satellite System
Gravity Recovery and Climate Experiment. Joint NASA/DLR
satellite.
High Frequency (3 to 30 MHz) radio
High voltage
Low Earth Orbit
Middle Earth Orbit
million electron-volts
Multi-functional Satellite Augmentation System (Japanese SBAS)
milliSievert – unit of radiation dose
Satellite-based Augumentation System (for GNSS)
Spacecraft
US Air Force satellite mission to study charging effects, flown in
late 1970s and early 1980s.
Single event effect
Solar energetic particle
To be confirmed
To be done
Unmanned Aerial Vehicle
Wide Area Augmentation System (US SBAS)

References

 Beggan, C. D., D. Beamish, A. Richards, G. S. Kelly, and A. W. P. Thomson (2013), Prediction of extreme geomagnetically induced currents in the IVK high-voltage network, <i>Space Weather</i> 11, 407–419, doi:10.1002/swe.20065. Blake, S. P., Gallagher, P. T., McCauley, J., Jones, A. G., Hogg, C., Campanyà, J.,Bell, D. (2016). Geomagnetically induced currents in the Irish power network during geomagnetic storms. <i>Space Weather</i>, 14, 1–19, doi:10.1002/20165W001534 Cagniard, L. (1953) Basic theory of the magneto-telluric method of geophysical prospecting. <i>Geophysics</i> 18, 605–635 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Certuri, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J., Meyer, R.F., Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Clivert, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extrema eartivity. J. Space Weather Space Clim., 3A, 31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, 10N GPS 2000, Salt Lake City, ULah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Sp	
 network, <i>Space Weather</i> 11, 407–419, doi:10.1002/swe.20065. Blake, S. P., Gallagher, P. T., McCauley, J., Jones, A. G., Hogg, C., Campanyà, J.,Bell, D. (2016). Geomagnetically induced currents in the Irish power network during geomagnetic storms. <i>Space Weather</i>, 14, 1–19. doi: 10.1002/2016SW001534 Cagniard, L. (1953) Basic theory of the magneto-telluric method of geophysical prospecting. <i>Geophysics</i> 18, 605–635 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity. <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662–671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (I	
 Blake, S. P., Gallagher, P. T., McCauley, J., Jones, A. G., Hogg, C., Campanyà, J.,Bell, D. (2016). Geomagnetically induced currents in the Irish power network during geomagnetic storms. <i>Space Weather</i>, 14, 1–19. doi: 10.1002/2016SW001534 Cagniard, L. (1953) Basic theory of the magneto-telluric method of geophysical prospecting. <i>Geophysics</i> 18, 605–635 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geolectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA, http://inyurl.com/xx3ufpq Dyer,	Prediction of extreme geomagnetically induced currents in the UK high-voltage
 D. (2016). Geomagnetically induced currents in the Irish power network during geomagnetic storms. <i>Space Weather</i>, 14, 1–19. doi: 10.1002/2016SW001534 Cagniard, L. (1953) Basic theory of the magneto-telluric method of geophysical prospecting. <i>Geophysics</i> 18, 605–635 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Stritillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barus, S. (2004) "Inoospheric Strites to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyul.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancement	network, Space Weather 11, 407–419, doi:10.1002/swe.20065.
 geomagnetic storms. <i>Space Weather</i>, 14, 1–19. doi: 10.1002/2016SW001534 Cagniard, L. (1953) Basic theory of the magneto-telluric method of geophysical prospecting. <i>Geophysics</i> 18, 605–635 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013) Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Certuti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://inyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect, IEEE Trans. Nuc. Sci. 50, 2038-2045. doi	Blake, S. P., Gallagher, P. T., McCauley, J., Jones, A. G., Hogg, C., Campanyà, J.,Bell,
 Cagniard, L. (1953) Basic theory of the magneto-telluric method of geophysical prospecting. <i>Geophysics</i> 18, 605–635 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.rang.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F., Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://inyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircarfa tlitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dye	D. (2016). Geomagnetically induced currents in the Irish power network during
 prospecting, <i>Geophysics</i> 18, 605–635 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Cirtuillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Lui, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmo	geomagnetic storms. Space Weather, 14, 1–19. doi: 10.1002/2016SW001534
 prospecting, <i>Geophysics</i> 18, 605–635 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Cirtuillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Lui, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmo	
 Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F., Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S., Campbell, A., (2004) " Observation of the solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C. S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc</i>	
 Hapgood, M., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Rogers, C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geolectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://inyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 D	
 C., Ryden, K., Saunders, S., Sweeting, M., Tanner, R. & Thomson, A. (2013). Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity. <i>J. Space Weather Space Clim</i>. 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNS 2004), Long Beach, California, USA. http://iinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model," <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C. A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl	
 space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F., Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/sws/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 40: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinnmez, I. A., J. G. Kappenman, and W.	
 Engineering. https://www.raeng.org.uk/publications/reports/space-weather-full-report Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F., Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standar	
 Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J, Meyer, R.F, Doherty, P., and Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Luit, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model," <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinnmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Manage	
 Coster, A.J. (2008) Effect of intense December 2006 solar radio bursts on GPS receivers. <i>Space Weather</i> 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Lei, F., Glucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from	
 Space Weather 6, S10D07, doi:10.1029/2007SW000375. Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D. F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, "<i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, "<i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 	
 Cliver, E.W. and Dietrich, W.F. (2013) The 1859 space weather event revisited: limits of extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C.S., Lei, F., Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current	
 extreme activity, <i>J. Space Weather Space Clim.</i> 3, A31, doi: 10.1051/swsc/2013053 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model," <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and </i>	
 Divett, T., Ingham, M., Beggan, C. D., Richardson, G. S., Rodger, C. J., Thomson, A. W. P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 <li< td=""><td></td></li<>	
 P., & Dalzell, M. (2017). Modeling geoelectric fields and geomagnetically induced currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CRED0 and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtc	
 currents around New Zealand to explore GIC in the South Island's electrical transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in	
 transmission network. <i>Space Weather</i>, 15, 1396–1412. doi: 10.1002/2017SW001697 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans.</i> <i>Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Doherty, P. (2000) Ionospheric Scintillation Effects in Equatorial and Auroral Regions, ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans.</i> <i>Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from <u>http://www.ecss.nl/</u>. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	-
 ION GPS 2000, Salt Lake City, Utah, p. 662-671. Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, "<i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Datta-Barua, S. (2004) "Ionospheric Threats to Space-Based Augmentation System Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans.</i> <i>Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Development," presented at the Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans.</i> <i>Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, "<i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
Long Beach, California, USA. http://tinyurl.com/zx3ufpq Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans.</i> <i>Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from <u>http://www.ecss.nl/</u> . Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in	
 Dyer, C. S., Lei, F., Clucas, S. N., Smart, D.F., Shea, M. A. (2003) "Solar particle enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model," <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 enhancements of single event effect rates at aircraft altitudes," <i>IEEE Trans. Nuc. Sci.</i> 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model," <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 50, 2038-2045. doi: 10.1109/TNS.2003.821375 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, "<i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Dyer C.S., Hunter, K., Clucas, S., Campbell, A., (2004) " Observation of the solar particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans. Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, "<i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	•
 particle events of October & November 2003 from CREDO and MPTB," <i>IEEE Trans.</i> <i>Nuc. Sci.</i> 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, "<i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from <u>http://www.ecss.nl/</u>. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Nuc. Sci. 51, 3388-3393. doi: 10.1109/TNS.2004.839156 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Dyer, C.S., Lei, F., Hands, A., Truscott, P. (2007) "Solar Particle Events In The QinetiQ Atmospheric Radiation Model, "<i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from <u>http://www.ecss.nl/</u>. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	1
 Atmospheric Radiation Model, " <i>IEEE Trans. Nuc. Sci.</i> 54, 1071-1075. Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from <u>http://www.ecss.nl/</u>. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Dyer, C., A. Hands, K. Ryden and F. Lei, (2017) Extreme Atmospheric Radiation Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from <u>http://www.ecss.nl/</u>. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Environments & Single Event Effects, IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from <u>http://www.ecss.nl/</u>. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	·
 10.1109/TNS.2017.2761258 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 engineering - Space environment, download from http://www.ecss.nl/. Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
 Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in 	
geomagnetically induced current risks on the national grid company's electric power transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in	engineering - Space environment, download from <u>http://www.ecss.nl/</u> .
transmission system., <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> 64, 5-6, 743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in	Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the
743-756. doi: 10.1016/S1364-6826(02)00036-6 Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in	geomagnetically induced current risks on the national grid company's electric power
Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in	transmission system., Journal of Atmospheric and Solar-Terrestrial Physics 64, 5-6,
Eroshenko, E.A., A.V. Belov, D. Boteler, S.P. Gaidash, S.L. Lobkov, R. Pirjola, L. Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in	743-756. doi: 10.1016/S1364-6826(02)00036-6
Trichtchenko (2010) Effects of strong geomagnetic storms on Northern railways in	
	Russia, Adv. Space Res. 46, 1102-1110. doi: 10.1016/j.asr.2010.05.017

 Fennell, J. F.; Koons, H. C.; Roeder, J. L.; Blake, J. B. (2001) Spacecraft Charging: Observations and Relationship to Satellite Anomalies, Aerospace Report TR-2001(8570)-5 http://www.dtic.mil/egi-bin/GetTRDoc?AD=ADA394826 Gaunt C.T. (2014) Reducing uncertainty – responses for electricity utilities to severe solar storms. <i>J. Space Weather Space Clim.</i> 4, A01. doi: 10.1051/swsc/2013058 Halcrow, B. W., and J. S. Nisbet (1977), A model of F2 peak electron densities in the main trough region of the ionosphere, Radio Sci., 12(5), 815–820, Doi:10.1029/RS012i005p0815. Feynman, J. G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence model: JPL 1991, <i>J. Geophys. Res.</i> 98, 13,281–13,294, doi:10.1029/921A02670. House of Lords Science and Technology Committee (2005) <i>Pandemic Influenza: Report with Evidence</i>, HMSO: London, 124. https://publications.parliament.uk/pa/ld200506/dselect/dsetech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TINS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J. G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, Adv. Space Res. 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GL in the UK and French high-voltage transmission systems during severe magnetic storms, Space Weather, 15, 99–114, doi:10.1002/2016SW001469. Karos, R., C (2001), Statistical analysis of o	
 2001(8570)-5 http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA394826 Gaunt C.T. (2014) Reducing uncertainty – responses for electricity utilities to severe solar storms. J. Space Weather Space Clim. 4, AOI. doi: 10.1051/swsc?2013058 Halcrow, B. W., and J. S. Nisbet (1977), A model of F2 peak electron densities in the main trough region of the ionosphere, Radio Sci., 12(5), 815–820, Doi:10.1029/RS0121005p00815. Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence model: JPL 1991, J. Geophys. Res. 98, 13,281–13,294, doi:10.1029/92JA02670. House of Lords Science and Technology Committee (2005) Pandemic Influenza: Report with Evidence, HMSO: London, 124. https://publications.parliament.uk/pa1/d200506/idselect/ldsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, IEEE Trans. Nucl. Sci, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, Adv. Space Res. 38, 188-199, doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather, 15, 99–114, doi:10.1002/20105004300234. Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, J. Geophys. Re	
 Gaunt C.T: (2014) Reducing uncertainty – responses for electricity utilities to severe solar storms. J. Space Weather Space Clim. 4, A01. doi: 10.1051/swsc/2013058 Halcrow, B. W., and J. S. Nisbet (1977). A model of F2 peak electron densities in the main trough region of the ionosphere, Radio Sci., 12(5), 815–820, Doi:10.1029/RS012i005p00815. Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence model: JPL 1991. J. Geophys. Res. 98, 13,281–13,294, doi:10.1029/92JA02670. House of Lords Science and Technology Committee (2005) Pandemic Influenza: Report with Evidence, HMSO: London, 124. https://publications.parliament.uk/pal/d200506/Idselect/Idsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921. Adv. Space Res. 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather, 15, 99–114. doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, J. Geophys. Res., 106(A6), 10.915–10.921, doi:10.1029/2000JA0	
 solar storms. J. Space Weather Space Clim. 4, A01. doi: 10.1051/swsc/2013058 Halcrow, B. W., and J. S. Nisbet (1977), A model of F2 peak electron densities in the main trough region of the ionosphere, Radio Sci., 12(5), 815–820, Doi:10.1029/RS012i005p00815. Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence model: JPL 1991, <i>J. Geophys. Res.</i> 98, 13,281–13,294, doi:10.1029/92JA02670. House of Lords Science and Technology Committee (2005) <i>Pandemic Influenza: Report with Evidence</i>, HMSO: London, 124. https://publications.parliament.uk/pa/1d200506/Idselect/Idsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun, U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, Adv. Space Res. 38, 188-199. doi: 10.106/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Bace Wather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.33.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1022/2000JA000234. Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015)	
 Halcrow, B. W., and J. S. Nisbet (1977), A model of F2 peak electron densities in the main trough region of the ionosphere, Radio Sci., 12(5), 815–820, Doi:10.1029/RS0121005p00815. Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence model: JPL 1991, <i>J. Geophys. Res.</i> 98, 13,281–13,294, doi:10.1029/92JA02670. House of Lords Science and Technology Committee (2005) <i>Pandemic Influenza: Report with Evidence</i>, HMSO: London, 124. https://publications.parliament.uk/pa/ld200506/ldselect/ldsetech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 29–292. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and	
 main trough region of the ionosphere, Radio Sci., 12(5), 815–820, Doi:10.1029/RS012i005p00815. Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993). Interplanetary proton fluence model: JPL 1991, J. Geophys. Res. 98, 13,281–13,294, doi:10.1029/92JA02670. House of Lords Science and Technology Committee (2005) Pandemic Influenza: Report with Evidence, HMSO: London, 124. https://publications.parliament.uk/pa/ld200506/Idselect/Idsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun, U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, Adv. Space Res. 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, Space Weather, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook, doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geoma	solar storms. J. Space Weather Space Clim. 4, A01. doi: 10.1051/swsc/2013058
 Doi:10.1029/R\$012i005p00815. Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence model: JPL 1991, J. Geophys. Res. 98, 13,281–13,294, doi:10.1029/921A02670. House of Lords Science and Technology Committee (2005) Pandemic Influenza: Report with Evidence, HMSO: London, 124. https://publications.parliament.uk/pa/d200506/dselect/dsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, IEEE Trans. Nucl. Sci, doi: 10.1109/TIS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, Adv. Space Res. 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, Space Weather, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, J. Geophys. Res., 106(A6), 10.915–10.921, doi:10.1029/2000IA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by AC	Halcrow, B. W., and J. S. Nisbet (1977), A model of F2 peak electron densities in the
 Doi:10.1029/R\$012i005p00815. Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence model: JPL 1991, J. Geophys. Res. 98, 13,281–13,294, doi:10.1029/921A02670. House of Lords Science and Technology Committee (2005) Pandemic Influenza: Report with Evidence, HMSO: London, 124. https://publications.parliament.uk/pa/d200506/dselect/dsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, IEEE Trans. Nucl. Sci, doi: 10.1109/TIS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, Adv. Space Res. 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, Space Weather, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, J. Geophys. Res., 106(A6), 10.915–10.921, doi:10.1029/2000IA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by AC	
 Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence model: JPL 1991, <i>J. Geophys. Res.</i> 98, 13,281–13,294, doi:10.1029/92JA02670. House of Lords Science and Technology Committee (2005) <i>Pandemic Influenza: Report with Evidence</i>, HMSO: London, 124. https://publications.parliament.uk/pa/ld200506/ldselect/ldsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10, 915–10.921, (doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical	
 model: JPL 1991, <i>J. Geophys. Res.</i> 98, 13,281–13,294, doi:10.1029/92JA02670. House of Lords Science and Technology Committee (2005) <i>Pandemic Influenza: Report with Evidence</i>, HMSO: London, 124. https://publications.parliament.uk/pa/ld200506/ldselect/ldsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>,120, 8848–8860, doi:10.1002/2015JA021702. Lantos	
 House of Lords Science and Technology Committee (2005) Pandemic Influenza: Report with Evidence, HMSO: London, 124. https://publications.parliament.uk/pa/d200506/dselect/ldsctech/88/88.pdf ICAO (2015). North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun, U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015). Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes	
 with Evidence, HMSO: London, 124. https://publications.parliament.uk/pa/ld200506/ldselect/ldsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Kraussnann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlock. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation</i> <i>Protecti</i>	
 https://publications.parliament.uk/pa/ld200506/ldselect/ldsctech/88/88.pdf ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun, U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188–199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929–929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1029/2000JA000234. Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015). Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199–210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. <li< td=""><td></td></li<>	
 ICAO (2015), North Atlantic Operations and Airspace Manual. Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection	
 Jiggens, P. et al., (2018) The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation</i> <i>Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. Lond	
 Radiation Environment (SAPPHIRE) Model, <i>IEEE Trans. Nucl. Sci</i>, doi: 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http:/	
 10.1109/TNS.2017.2786581 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinvurl.com/yd9a5fhg Love, J. J. (2012), Credible occurr	
 Jones, R. M., and J. J. Stephenson (1975), A versatile three-dimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinvurl.com/yd9a5fhg Love, J. J. (2012), Credible occurrence probabilities for extreme geophys	
 computer program for radio waves in the ionosphere, Rep. OT 75–76, Off. for Telecommun., U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Locdwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. <	
 Telecommun, U.S. Dep. of Comm., Washington, D. C. Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E	
 Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/20001A000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically indu	
 field disturbance events – An analysis of observational evidence including the great storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison	
 storm of May 1921, <i>Adv. Space Res.</i> 38, 188-199. doi: 10.1016/j.asr.2005.08.055 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10.915–10.921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	Kappenman, J.G. (2006) Great geomagnetic storms and extreme impulsive geomagnetic
 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	field disturbance events – An analysis of observational evidence including the great
 Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	storm of May 1921, Adv. Space Res. 38, 188-199. doi: 10.1016/j.asr.2005.08.055
 storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140(2)</i>, 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	Kelly, G. S., A. Viljanen, C. D. Beggan, and A. W. P. Thomson (2017), Understanding
 storms, <i>Space Weather</i>, 15, 99–114, doi:10.1002/2016SW001469. Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140(2)</i>, 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	GIC in the UK and French high-voltage transmission systems during severe magnetic
 Kerr, R. (2011) Into the Stretch for Science's Point Man on Doomsday, Science, 6045, 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys. Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 333, 929-929. DOI: 10.1126/science.333.6045.928 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys.</i> <i>Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation</i> <i>Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 Koons, H. C. (2001), Statistical analysis of extreme values in space science, <i>J. Geophys.</i> <i>Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation</i> <i>Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, <u>http://tinyurl.com/yd9a5fhq</u> Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 <i>Res.</i>, 106(A6), 10,915–10,921, doi:10.1029/2000JA000234. Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation</i> <i>Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, <u>http://tinyurl.com/yd9a5fhq</u> Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	Koons, H. C. (2001), Statistical analysis of extreme values in space science, J. Geophys.
 Krausmann, E., Andersson, E., Russell, T., Murtagh, W. (2015): JRC report: Space Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation</i> <i>Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, <u>http://tinyurl.com/yd9a5fhq</u> Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 Weather and Rail: Findings and Outlook. doi:10.2788/211456 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 Krauss, S., M. Temmer, A. Veronig, O. Baur, and H. Lammer (2015), Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results, <i>J. Geophys. Res.</i>120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140(2)</i>, 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 GRACE: Statistical results, J. Geophys. Res.120, 8848–8860, doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," Radiation Protection Dosimetry 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. Proceedings of the IEE, part H, 140(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, Geophys. Res. Lett. 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 doi:10.1002/2015JA021702. Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140(2)</i>, 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 Lantos, P., Fuller, N. (2003) "History of the solar particle event radiation doses on-board aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 aeroplanes using a semi-empirical model and Concorde measurements," <i>Radiation</i> <i>Protection Dosimetry</i> 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, <u>http://tinyurl.com/yd9a5fhq</u> Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 Protection Dosimetry 104, 3, 199-210. Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. Proceedings of the IEE, part H, 140(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, <u>http://tinyurl.com/yd9a5fhq</u> Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 Lockwood, M. (1993), Modelling the high latitude ionosphere for time varying plasma convection. <i>Proceedings of the IEE</i>, part H, <i>140</i>(2), 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 convection. <i>Proceedings of the IEE</i>, part H, <i>140(2)</i>, 91-100. London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 London Economics, 2017. The economic impact on the UK of a disruption to GNSS, http://tinyurl.com/yd9a5fhq Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 <u>http://tinyurl.com/yd9a5fhq</u> Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 Love, J. J. (2012), Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	• •
 Earthquakes, volcanic eruptions, magnetic storms, <i>Geophys. Res. Lett.</i> 39, L10301, doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
 doi:10.1029/2012GL051431. Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver. 	
Mac Manus, D. H., Rodger, C. J., Dalzell, M., Thomson, A. W. P., Clarke, E., & Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver.	
Clilverd, M. A. (2017). Long term geomagnetically induced current observations from New Zealand: Earth return corrections and comparison with geomagnetic field driver.	
New Zealand: Earth return corrections and comparison with geomagnetic field driver.	
$S_{max} = W_{asthew} = 15 + 1020 + 1029 + 10 + 1000/2017SW001625$	
<i>Space Weather</i> , 15, 1020–1058. doi: 10.1002/20175W001055	Space Weather, 15, 1020–1038. doi: 10.1002/2017SW001635

- Mannucci, A.J. (2010) "Global Ionospheric Storms," White Paper submitted to the Space Studies Board of the US National Research Council for its 2010 "decadal survey" in solar and space physics (heliophysics). http://tinyurl.com/zsyz5ey
- Marsden, P. L., Berry, J. W., Fieldhouse, P., & Wilson, J. G. (1956). Variation of cosmicray nucleon intensity during the disturbance of 23 February 1956. *J. Atmos. Terr. Phys.* 8, 278-281. doi: 10.1016/0021-9169(56)90135-0
- Mateo-Velez, J.-C, A. Sicard, D. Payan, N. Ganushkina, N. P.Meredith, and I. Sillpanaa, (2017), Spacecraft surface charging induced by severe environments at geosynchronous orbit, *Space Weather*, doi:10.1002/2017SW001689
- McBeath, A. (1999) Meteors, comets and millennialism, Journal of the IMO, 27;6, 318-326. Available on ADS with bibliographic code: 1999JIMO...27..318M
- Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J. R.,
- Possnert, G., Sigl, M., Svensson, A. & Synal, H.-A. (2015). Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. *Nature communications*, 6. doi:10.1038/ncomms9611

Meredith, N. P., R. B. Horne, J. D. Isles, and J. V. Rodriguez (2015), Extreme relativistic electron fluxes at geosynchronous orbit: Analysis of GOES E >2 MeV electrons, *Space Weather* 13, doi:10.1002/2014SW001143.

Meredith, N., Horne, R., Isles, J., Ryden, K., Hands, A. and Heynderickx, D. (2016a) Extreme internal charging currents in medium Earth orbit: Analysis of SURF plate currents on Giove-A, *Space Weather*, 14, 578–591. doi:10.1002/2016SW001404.

Meredith, N. P., R. B. Horne, J. D. Isles, and J. C. Green (2016b), Extreme energetic electron fluxes in low Earth orbit: Analysis of POES E > 30, E > 100 and E > 300 keV electrons, *Space Weather*, 14, 136–150, doi:10.1002/2015SW001348.

Meredith, N. P., R. B. Horne, I. Sandberg, C. Papadimitriou, and H. D. R. Evans (2017), Extreme relativistic electron fluxes in the Earth's outer radiation belt: Analysis of INTEGRAL IREM data, *Space Weather*, 15, 917–933, doi:10.1002/2017SW001651.

Miyake, F., K. Nagaya, K. Masuda, and T. Nakamura (2012), A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan, *Nature* 486, 240-242, doi: 10.1038/nature11123.

NASA (2011). Mitigating In-Space Charging Effects-A Guideline. NASA-HDBK-4002. https://standards.nasa.gov/standard/nasa/nasa-hdbk-4002.

Ngwira, C. M., A. Pulkkinen, F. D. Wilder, and G. Crowley (2013), Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications, *Space Weather* 11, 121–131, doi:10.1002/swe.20021.

Ngwira, C. M., A. A. Pulkkinen, E. Bernabeu, J. Eichner, A. Viljanen, and G. Crowley (2015), Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements, *Geophys. Res. Lett.* 42, 6916–6921, doi:10.1002/2015GL065061.

- Nikitina, L., L. Trichtchenko, and D. H. Boteler (2016), Assessment of extreme values in geomagnetic and geoelectric field variations for Canada, *Space Weather*, 14, 481–494, doi:10.1002/2016SW001386.
- Nwankwo, V. U. J., S.K. Chakrabarti and R.S. Weigel (2015) Effects of plasma drag on low Earth orbiting satellites due to solar forcing induced perturbations and heating, *Adv. Space Res.* 56, 47-56. doi: 10.1016/j.asr.2015.03.044

O'Brien, T. P., J. F. Fennell, J. L. Roeder, and G. D. Reeves (2007), Extreme electron fluxes in the outer zone, *Space Weather* 5, S01001, doi:10.1029/2006SW000240.

O'Brien, T. P. (2009) SEAES-GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit, *Space Weather* 7, S09003, doi:10.1029/2009SW000473

Oliveira, D. M., Zesta, E., Schuck, P. W., & Sutton, E. K. (2017). Thermosphere global time response to geomagnetic storms caused by coronal mass ejections. Journal of Geophysical Research: Space Physics, 122, 10,762–10,782. https://doi.org/10.1002/2017JA024006

Quenby, J. J., Webber, W. (1959) Cosmic-ray geomagnetic cut-off rigidities and the Earth's magnetic field, *Phil. Mag.*, 4, 90-112. doi:10.1080/14786435908238229

Pawlowski, D.J. and A.J. Ridley (2008) Modeling the thermospheric response to solar flares, J. Geophys. Res., 113, A10309, doi:10.1029/2008JA013182

Pinto Jayawardena, T., Buesnel, G., Mitchell, C., Boyles, R., Forte, B. and Watson, R., 2017. Towards Re-Creating Real-World Ionospheric Scintillation Events in a Spirent Simulator-Based Robust PNT Test Framework. In: The Institute of Navigation International Technical Meeting, 2017

Preston, J., Chadderton, C., Kaori, K. and Edmonds, C. (2015) Community Response in disasters: an ecological learning framework, International Journal of Lifelong Education, 34;6, 727-753. doi: 10.1080/02601370.2015.1116116

Pulkkinen, Antti, Emanuel Bernabeu, Jan Eichner, Ari Viljanen and Chigomezyo Ngwira (2015) Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. *Earth, Planets and Space* 67:93, doi: 10.1186/s40623-

geomagnetically induced currents. Earth, Planets and Space 67:93, doi: 10.1186/840623-015-0255-6

Pulkkinen, A., et al. (2017), Geomagnetically induced currents: Science, engineering, and applications readiness, *Space Weather*, 15, 828–856, doi:10.1002/2016SW001501.

Riley, P. (2012), On the probability of occurrence of extreme space weather events, *Space Weather* 10, S02012, doi: 10.1029/2011SW000734.

Rishbeth, H., Shea, M. A., Smart, D. F., 2009, "The solar-terrestrial event of 23 February 1956," *Advances in Space Research* 44, 1096-1106. doi: 10.1016/j.asr.2009.06.020

Rodger, C. J., Mac Manus, D. H., Dalzell, M., Thomson, A. W. P., Clarke, E., Petersen, T., ... Divett, T. (2017). Long-term geomagnetically induced current observations from New Zealand: Peak current estimates for extreme geomagnetic storms. *Space Weather*, 15. Doi: 10.1002/2017SW001691

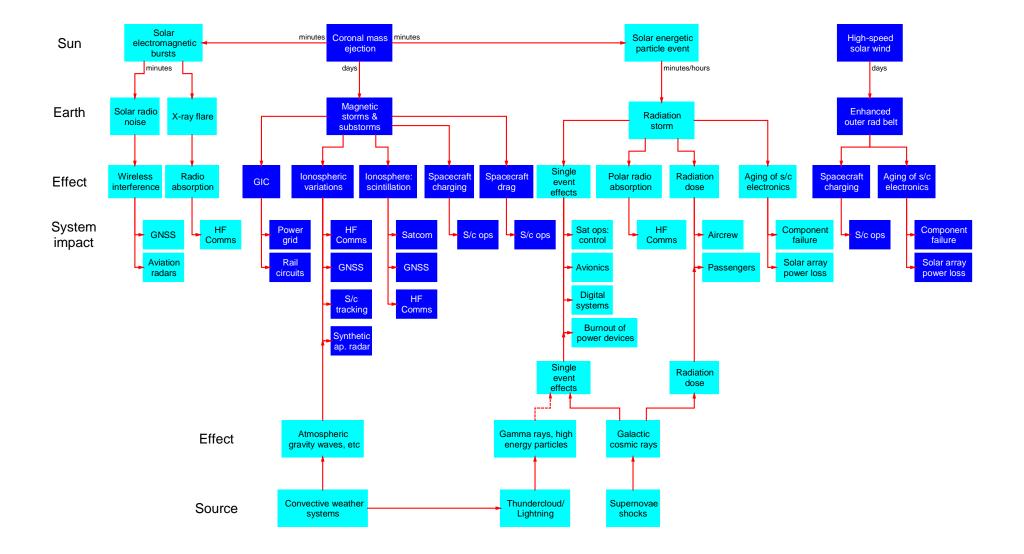
Roederer, J. G. (1970), Dynamics of Geomagnetically Trapped Radiation, Springer, New York, doi:10.1007/978-3-642-49300-3.

Rogers, N.C., and F. Honary (2015), Assimilation of Real-time Riometer Measurements into Models of 1-30 MHz Polar Cap Absorption, J. Space Weather and Space Climate, **5**, A8 DOI:10.1051/swsc/2015009, 2015.

Rogers, N. C., F. Honary, J. Hallam, A.J. Stocker, E.M. Warrington, D.R. Siddle, D. Danskin and B. Jones, "Assimilative Real-time Models of HF Absorption at High Latitudes", Proc. 14th International Ionospheric Effects Symposium, Alexandria, VA, USA, 12-14 May 2015. (Paper 48), 2015. Available online: http://ies2015.bc.edu/wp-content/uploads/2015/05/048- Rogers-Paper.pdf. Also submitted to Radio Sci., Sept. 2015 (IES 2015 Special Issue).

Ryden, K.A. et al., (2008) Observations of Internal Charging Currents in Medium Earth Orbit," IEEE Transactions on Plasma Science 36, 2473-2481. doi: 10.1109/TPS.2008.2001945

Ryden, K.A. and A. D. P. Hands. (2017) Modeling of Electric Fields Inside Spacecraft Dielectrics Using In-Orbit Charging Current Data, IEEE Trans. Plasma Sci. 45, 1927-1932. doi: 10.1109/TPS.2017.2665622


Sauer, H. H., and D. C. Wilkinson. Global mapping of ionospheric HF/VHF radio wave absorption due to solar energetic protons. Space Weather, 6, S12002, 2008, DOI: 10.1029/2008SW000399.

Sciencewise (2014) Space Weather: Public Dialogue, STFC, BIS: London. http://www.sciencewise-erc.org.uk/cms/space-weather-dialogue.

Schumer, E. A. Improved modeling of midlatitude D-region ionospheric absorption of
high frequency radio signals during solar x-ray flares. Ph.D. dissertation,
AFIT/DS/ENP/09-J01, p.49, United States Air Force, Wright-Patterson Air Force Base,
Ohio, USA, June 2009.
Scoles, S (2017) The sun will probably knock out the grid someday, Popular Science,
https://www.popsci.com/space-weather-woman
Shprits, Y., D. Subbotin, B. Ni, R. Horne, D. Baker, and P. Cruce (2011), Profound
change of the near-Earth radiation environment caused by solar superstorms, Space
Weather 9, S08007, doi:10.1029/2011SW000662.
Skone, S. (2000) Impact of Ionospheric Scintillation on SBAS Performance, ION GPS
2000, Salt Lake City, Utah, 284-293.
Smith, P.M. (1990). Effects of geomagnetic disturbances on the national grid system.
Universities Power Engineering Conference (UPEC).
Sutton, E.K, J. M. Forbes, and R. S. Nerem (2005) Global thermospheric neutral density
and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer
data, J. Geophys. Res. 110, A09S40, doi:10.1029/2004JA010985
Thomson, A. W. P., E. B. Dawson, and S. J. Reay (2011), Quantifying extreme behavior
in geomagnetic activity, Space Weather, 9, S10001, doi: 10.1029/2011SW000696.
Tsurutani, B. T., W. D. Gonzalez, G. S. Lakhina, and S. Alex (2003), The extreme
magnetic storm of 1–2 September 1859, J. Geophys. Res. 108, 1268,
doi:10.1029/2002JA009504, A7.
Tylka, Allan J. And Dietrich, William (2009) "A New and Comprehensive Analysis of
Proton Spectra in Ground-Level Enhanced (GLE) Solar Particle Events" Proceedings of
the 31st International Cosmic Ray Conference (Łódź), 7-15.
Vasyliunas, V.M. (2011) The largest imaginable magnetic storm, J. Atmos. Solar-Terr.
<i>Phys.</i> 73, 1444–1446. doi:10.1016/j.jastp.2010.05.012
Warrington, E. M., N. Y. Zaalov, J. S. Naylor, and A. J. Stocker (2012), HF propagation
modeling within the polar ionosphere, Radio Sci., 47, RS0L13,
doi:10.1029/2011RS004909.
Watermann, J. (2007) The Magnetic Environment – GIC and other ground effects, in:
Lilensten, J. (Ed.), Space Weather – Research towards applications in Europe. Springer,
Dordrecht, pp. 269-275, 2007.
Wintoft, P., Viljanen, A., and Wik, M. (2016) Extreme value analysis of the time
derivative of the horizontal magnetic field and computed electric field, Ann. Geophys.
34, 485-491, doi: 10.5194/angeo-34-485-2016.
Xapsos, M. A., G. P. Summers, J. L. Barth, E. G. Stassinopoulos, and E. A. Burke
(1999), Probability Model for Worst Case Solar Proton Event Fluences, <i>IEEE Trans.</i>
Nucl. Sci. 46, 1481-1485
Xapsos, M. A., G.P. Summers, J.L. Barth, E. G. Stassinopoulos and E.A. Burke (2000)
"Probability Model for Cumulative Solar Proton Event Fluences", <i>IEEE Trans. Nucl.</i>
<i>Sci.</i> vol. 47, no. 3, June 2000, pp 486-490. Doi: 10.1109/23.856469

Appendix 1: Interrelationships between effects

Many space weather effects will occur close together in time as they have a common origin in solar phenomena such as coronal mass ejections. The figure below outlines many of the most important associations between space weather effects.

Appendix 2. Space Weather: potential 'worst case' public behaviour impacts: note by John Preston.

Introduction

Public behaviour after a severe space weather event is difficult to predict as the infrequency of such events does not give us a baseline. Infrastructure failure following an extreme event may result in behaviours such as public disorder or stockpiling that might be expected in a major crisis. This depends on the scale of the event. The 1989 solar storm which caused a blackout in Toronto, closing schools and businesses, did not result in notable public behaviour anomalies but the impact on the electricity grid was short lived.

Because of the source of space weather events they might be subject to conspiracy theories and rumours that reject scientific explanations. Very rarely, cult groups have used solar events as a 'sign' to take action in terms of mass suicides or violent actions. The four potential impacts provided below would only be seen in a worst case scenario.

Rejection of scientific understanding in favour of conspiracy / rumour

Severe space weather is a low probability, high impact event where there is little public understanding. A telephone survey of 1,010 adults in England and Wales conducted in 2014 found that 46% had never heard of space weather and an additional 29% had heard of it but know almost nothing about it. 35% of respondents would be more concerned about a power cut in their area caused by space weather when compared to other causes (Sciencewise, 2014). Scientific understanding of space phenomena can be undermined by conspiracy theories which may propagate online through the echo chamber effects of social media. For example, online rumours concerning the existence of a so called 'Planet X' or 'Nibiru' which will collide with earth have circulated online since 1995 despite the absence of scientific evidence (Kerr, 2011). A worst case scenario would be that lack of existing knowledge of space weather and the propagation of rumour and conspiracy on line would increase public anxiety around the event.

Reframing of the event with negative consequences for social cohesion

A recent comparative survey of public behaviour in disasters and emergencies which impact at regional or national level showed that in most cases communities will usually react in ways with neutral or positive impacts on social cohesion (Preston et al, 2015). However, in some cases communities will react negatively to official help and advice and politicise the event. This community behaviour in disasters, known as *reframing*, may occur in a severe space weather event particularly if communities consider that the official response is not equitable. For example, if power is restored to communities in a way that is perceived to be unfair then it is likely that there will be negative political consequences that may result in demonstrations or public disorder.

Mitigating against this, unpredictable or novel emergencies will not usually lead to political outrage as long as the public are made aware of the reasons for the event (but see point 1 above). A worst case scenario would be that there is public disorder in communities where the government response is seen to be inadequate.

Stockpiling (sometimes called 'panic buying')

Stockpiling is a rational behaviour in disasters and emergencies and is not a problem as long as retail stocks and supply chains are not compromised. Goods that are usually stockpiled are petrol,

bottled water and canned goods. If people consider that stocks and supply chains may be compromised in the future, or that they need excess supplies at home for an anticipated event, they may increase demand to the extent that current supply cannot meet demand. This can become a self-fulfilling prophecy. Fear of shortages leads to stockpiling which in turn leads to shortages that exacerbate demand through 'panic buying' resulting in shortages. Prices may rise rapidly, queuing may occur, stocks can be depleted and (rarely) some individuals may resort to theft to obtain supplies. Supply chains in the UK are lean (little stock is held) and are particularly vulnerable to panic buying in a crisis (House of Lords Scientific Committee, 2005). A worst case scenario would be widespread panic buying which would compromise supply chains and lead to inefficiencies such as queuing for petrol.

Millenarianism

Millenarianism refers a view of certain religious sects, or individuals, who consider that certain events are a sign that the world is coming to an end. These events are often linked to space events such as comets (McBeath, 2011) and pseudo-scientific concepts such as changes in 'galactic alignment' or cataclysmic 'pole shifts'. Sometimes religious cults use space events as a justification for mass suicides or violent events. For example, the 1999 suicide of 31 members of the 'Heaven's Gate' cult in San Diego, California was planned after their observations of the Hale-Bop comet in 1997 (they believed a spacecraft trailing the comet would take them from earth). 53 members of The Order of the Solar Temple, who worship the Sun, died in Switzerland in 1994. Many of these deaths were as a result of shooting and stabbing of their own members as well as from suicide. The Order of the Solar Temple is still in existence. Such events are difficult to predict but may coincide with a solar event such as severe space weather. *A worst case scenario would be a mass suicide, or other violent event, initiated by a cult group*.