S2I kick-off meeting Nov. 3rd, 2011

Gang Li University of Alabama in Huntsville

Diffusive shock acceleration (a microscopic point of view)

Diffusive Shock acceleration-- the standard theory

Parker's transport equation: Near isotropic dist.

 $\frac{\partial f}{\partial t} = -V_{w,i}\frac{\partial f}{\partial x_i} + \frac{\partial}{\partial x_i}\frac{\partial f}{\partial x_i} - V_{D,i}\frac{\partial f}{\partial x_i} + \frac{1}{3}\frac{\partial V_{w,i}}{\partial x_i}\frac{\partial f}{\partial \ln p} + Q$ diffusion drift energy change advection Effect of turbulence In conservation form: on particle $\frac{\partial f}{\partial t} + \nabla \cdot S + \frac{1}{p^2} \frac{\partial}{\partial p} (p^2 J) = 0$ Steady state solution $\mathbf{S} = -\frac{p}{3}\mathbf{u}\frac{\partial f}{\partial n} - \kappa \nabla f$ S: current in r space $f(p) \sim p^{-3s/s-1}$ $J = \frac{p}{3} u \cdot \nabla f$ J: current in p space **Gleeson-Axford 1967**

Acceleration time scale and shock geometry

• the highest energy is decided by the acceleration time scale.

Wave amplification at a parallel shock

$$\begin{aligned} \mathsf{A}_{I_+}(|k| < \gamma m |\Omega|/p_o) &= \frac{q |\Omega| N V_A p_o^{q-3} \cos \psi}{4(q-4)(q-2) V'^2} \frac{1}{k^2} \left| \frac{\gamma m \Omega}{k} \right|^{4-q} + I_+^o(k) \\ & \text{Seed population} \end{aligned}$$

Ground Level Events (GLEs)

GLEs are rare: only 16 in solar cycle 23.

• GLEs are very energetic particle events that have high intensity and reach high energy.

• Because their numbers are few, they offer a good opportunity for detailed examination of the underlying diffusive shock acceleration theory.

In particular, its applicability and limits.

Constraints on the acceleration height

Presence of preceding CMEs

GLE number/date	AR number/loc	FC/Onset time ^a	CME time	Δt^{b}	CME speed	CPA	AW	database	Ne/O	Mg/O	Si/O	Fe/O
-	8100	C1.9/3:12	04:20	8	307	263	59	CDAW	-	-	-	
55/1997.11.6	8100/S18W63	X9.4/11:49	12:10	-	1556	Halo	360	CDAW	0.26	0.202	0.169	0.650
-	8210	C5.4/4:48	05:31	8.5	352	228	80	SEEDS	-	-	-	
56/1998.5.2	8210/S15W15	X1.1/13.31	14:06	-	958	298	91	CDAW	0.33	0.298	0.203	0.636
-	8210	$M2.5/23:27^{p}$	00:02	8.0	786	274	110	CDAW	-	-	-	
57/1998.5.6	8210/S11W65	X2.7/07:58	08:29	-	1099	309	190	CDAW	0.32	0.249	0.157	0.502
-	8210	X2.7/07:58	09:32	-1.0	792	328	248	CDAW	-	-	-	
58/1998.8.24	8307	X1.0(07:58)	-	—	-	-	-	CDAW	-	-	-	
-	9077	C7.1/6:52	08:30	2.4	395	245	12	SEEDS	-	-	-	
59/2000.7.14	9077/N22W07	X5.7/10:03	10:54	-	1674	Halo	360	CDAW	0.16	0.219	0.149	0.09
-	9415	C7.7(08:26)	09:30	4.5	403	267	16	CDAW	-	-	-	
-	9415	C5.3(10:56)	11:18	2.8	511	199	70	CDAW	-	-	-	
60/2001.4.15	9415/S20W85	X14(13:19)	14:06	-	1199	245	167	CDAW	0.18	0.231	0.196	0.42
-	9415°	-	$18:54^{p}$	7.5	606	250	10	SEEDS	-	-	-	
61/2001.4.18	9415/S23W117	west limb	02:30	-	2465	Halo	360	CDAW	0.17	0.293	0.188	0.16
-	9684^{d}	-	13:20	3.1	308	266	6	SEEDS	-	-	-	
62/2001.11.4	9684/N06W18	X1.0(16:03)	16:35	-	1810	Halo	360	CDAW	0.13	0.195	0.134	0.07
-	9742	e	02:06	3.4	800	283	21	CDAW	-	-	-	
63/2001.12.26	9742/N08W54	M7.1(05:03)	05:30	-	1446	281	>212	CDAW	0.13	0.199	0.208	0.37
-	10069	C4.3/20:33	$20:50^{p}$	4.7	861	262	131	CDAW/CACT	-	-	-	
64/2002.8.24	10069/S02W81	X3.1/00:49	01:30	-	Halo	360	1913	CDAW	0.15	0.208	0.138	0.19
-	10486	C9.0/06:13	06:30	5.0	684	110	35	$SEEDS^{g}$	-	-	-	
65/2003.10.28	10486/S20E02	X17/11:00 ^f	11:30	-	-	-	-	CDAW	0.11	0.201	0.164	0.04
-	10486	C8.1/16:49	17:36	3.1	567	217	7	CACT/SEEDS ^m	-	-	-	
66/2003.10.29	10486/S19W09	X10/20:37	20:54	-	-	-	-	CDAW	0.24	0.241	0.172	0.14
-	10486	M1.3/8:39? ^h	9:30	8.0	2036	310	326	CDAW/CACT	-	-	-	
-	10486	h	11:30	6.0	826	224	33	CDAW	-	-	-	
67/2003.11.02	10486/S18W59	X8.3/17:03	17:30	-	2598	Halo	360	CDAW	0.13	0.193	0.119	0.04
-	10720	X2.2/9:06	09:30	0.4	2094	Halo	360	CDAW	-	-	-	
68/2005.1.17	10720/N14W25	$X3.8/9:38^{f}$	09:54	-	2547	Halo	360	CDAW	0.18	0.185	0.114	0.04
-	10720	C4.8/3:21	04:06	2.8	503	301	18	CDAW	-	-	-	
69/2005.1.20	10720/N14W61	X7.1/6:39	06:54	-	3242	Halo	360	CDAW	0.23	0.231	0.162	0.17
-	10930	i	20:28	6.2	474	193	50	CDAW	-	-	-	
70/2006.12.13	10930/S06W23	X3.4/2:17	02:45	-	1774	-	-	CDAW	0.205	0.21	0.20	0.778

Early survey on Large SEPs

A twin-CME proposal

Pre-eruption: B field orientation ==> Pseudo-streamer

Eruption:

two (or multiple) CMEs erupt in sequence within a time difference of ~ 8 hours

first CME/shock provides both the seed population and a strong background turbulence

second CME plumbs into the turbulence-enhanced region behind the 1st CME for an efficient shock acc

How about "normal" large SEP events?

Definition of large: at > 10 MeV/n, intensity > 10 pfu.

Group I: "twin-CMEs" that lead to large SEP

Group II: "twin-CMEs" that do not lead to large SEP

Group III: "fast single CME"

Are preceding CMEs necessary?

No.	Date	CME onset time	CPA	WD	Speed	AR	loc.	FC	Flare onset time	TypeII	Comment
			(deg)	(deg)	$(\rm km/s)$						
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
12	2000/01/28	20:12	halo	360	1177	8841	S31W17	C4.7	19:45	n	
13	2000/04/23	12:54	halo	360	1187	-	>NW90	-	-	n	bs
14	2000/05/05	15:50	halo	360	1594	8976	S12W88	M1.5	15:18	n	
15	2000/06/28	19:31	270	134	1198	?	N30W60	-	-	18:57	0
16	2000/08/11	07:31	273	70	1071	-	>NW90	-	-	n	bs
17	2000/09/16	05:18	halo	360	1215	9165	N15W07	M2.1	05:04	04:11	
18	2000/12/13	16:26	halo	360	1067	9267	N08E11	-	-	n	
19	2001/03/20	08:06	226	112	1130	-	>SW90	-	-	n	bs
20	2001/04/09	15:54	halo	360	1192	9415	S21W04	M7.9	15:20	15:26	
21	2001/04/11	13:31	halo	360	1103	9415	S23W32	M2.3	12:56	13:17	
22	2001/05/10	01:31	246	198	1056	9445	N25W80	C5.6	01:04	n	
23	2001/06/20	19:54	halo	360	1407	9504	N08W17	C2.3	19:00	n	
24	2001/06/24	07:31	halo	360	1094	9511	N10E11	C3.9	06:31	n	
25	2001/07/19	10:30	275	166	1668	9537	S08W62	M1.8	09:52	n	
26	2002/05/07	00:06	287	100	1222	9929	N22W66	C6.4	23:52	n	
27	2002/05/30	05:06	271	144	1625	-	>NW90	-	-	n	bs
28	2002/06/05	19:54	300	82	1175	-	>NW90	-	-	n	bs
29	2002/07/18	08:06	halo	360	1099	10030	N19W30	X1.8	07:24	07:42	hb
30	2002/08/06	18:25	218	134	1098	?	S30W30	-	-	n	0
31	2002/10/14	14:54	halo	360	1694	-	>NE90	-	-	14:20	bs
32	2002/10/23	02:50	306	119	1052	-	>NW90	-	-	n	bs
33	2002/11/24	20:30	halo	360	1077	?	N30E55	-	-	20:06	0
34	2002/12/21	02:30	2	225	1072	?	N40E20	-	-	n	о
35	2002/12/22	03:30	328	272	1071	10223	N23W42	M1.1	02:14	n	
36	2003/01/05	10:37	353	67	1183	?	N40E05	-	-	10:01	0
37	2003/01/23	18:06	307	60	1236	10263	S12W68	-	-	n	
38	2003/01/27	22:23	205	267	1053	10267	S17W23	-	-	22:11	
39	2003/03/17	19:54	291	96	1020	10314	S14W39	X1.5	18:49	n	
40	2003/06/02	00:30	265	172	1656	10365	S07W91	M6.5	00:07	00:19	
41	2003/06/05	20:06	230	239	1458	-	>SW90	-	-	20:02	bs
42	2003/11/07	15:54	halo	360	2237	10495	S21W89	-	-	n	
43	2003/11/11	13:54	halo	360	1315	10498	S04W63	M1.6	13:21	13:33	
44	2003/11/15	17:50	245	148	1375	-	-	-	-	n	bs
45	2004/07/31	05:54	259	197	1192	10652	N05W89	-	-	n	
46	2004/11/09	17:26	halo	360	2000	10696	N08W51	M8.9	16:59	17:18	
47	2004/12/03	00:26	halo	360	1216	10708	N08W02	M1.5	23:44	23:52	
48	2005/01/04	09:30	288	102	1087	?	N15W60	-	-	n	0
49	2005/01/19	08:29	halo	360	2020	10720	N15W51	X1.5	08:03	08:11	
50	2005/02/17	00:06	halo	360	1135	10734	S03W24	-	-	n	
51	2005/07/09	22:30	halo	360	1540	10786	N12W28	M2.8	21:47	21:59	

Fast single CMEs with V> 100 km/s.

Some have Xflares, type II radio bursts, connection is good.

However <u>NONE</u> of these lead to large SEPs!

Ding et al, 2011

Large SEP events in solar cycle 23

Effect of shock obliquity

Consider 5 shocks with theta_BN = 5, 25, 45, 65 and 85 degrees and prton, O^{+} and Fe^14 three species

kappa_parallel from the enhanced wave intensity due to streaming protons

$$\begin{split} \kappa_{||} &= \frac{v^2}{8} \int_{-1}^{+1} d\mu \frac{(1-\mu^2)^2}{D_{\mu\mu}} = \frac{v p^2 c^2}{8\pi Q^2 e^2} \frac{1}{I(k=\Omega/v)} \frac{8}{(\beta-2)(\beta-4)}.\\ I(|k| < \gamma m |\Omega|/p_o) &= I^e(k) + I^o(k) = 2\pi \frac{\beta |\Omega| \epsilon n V_A p_o^{\beta-3} cos \theta_{BN}}{(\beta-4)(\beta-2) u_{up}} \frac{1}{k^2} \Big| \frac{\gamma m \Omega}{k} \Big|^{4-\beta} + I^o(k), \end{split}$$

kappa_perp from the NLGC (Non-Linear-Guiding-Center) theory (need kappa_parallel as an input)

$$\kappa_{\perp} = \left[\sqrt{3}a^{2}\pi \frac{\Gamma(5/6)v}{2\sqrt{\pi}\Gamma(1/3)} \frac{\delta B_{2D}^{2}}{B_{0}^{2}} l_{2D}\right]^{2/3} \kappa_{||}^{\frac{1}{3}}, \quad \kappa_{\perp}\kappa_{||}/v^{2} > 3l_{2D}^{2}$$
$$\kappa_{\perp} = \frac{a^{2}}{2} \frac{\delta B_{2D}^{2}}{B_{0}^{2}} \kappa_{||}, \quad \kappa_{\perp}\kappa_{||}/v^{2} < 3l_{2D}^{2}$$

Shock evolution from ZEUS MHD

Need better/realistic CME/shock model from Predictive Science group!

kappa_parallel and kappa_perp

Time intensity profiles

Fluence

What is next?

1) Observationally, understand/confirm the role of upstream wave in accelerating particles at quasi-parallel shock for ESP events (with M. Desai).

2) Need better CME/shock model to yield shock parameters as input to the acceleration module of PATH (with P. Riley).

3) coupling to EMMREM, which has a Lagrangian grid to follow particle transport along and perp. to a field line by implementing the focused transport equation using a stochastic different equation method (with N. Schwadron).

4)understand the effect of shock ripples using test particle simulations and compare with hybrid ones (with J. Giacalone)