Global MHD Modeling of the Solar Corona and Inner Heliosphere for the Whole Heliosphere Interval

Pete Riley
Roberto Lionello Jon A. Linker and
Zoran Mikic
SAIC, San Diego, CA.

CAUTION: PRELIMINARY RESULTS

This talk explores the Whole Heliosphere Interval from the perspective of a global MHD model

Improved MHD modeling allows us to investigate physical processes producing observed coronal and heliospheric structure.

Comparison with Whole Sun Month (WSM) shows that structure of WHI is markedly different, in spite of the 11.5 year separation

Our improved global MHD code, MAS, includes energy transport processes.

$$
\begin{gathered}
\nabla \times \mathbf{B}=\frac{4 \pi}{c} \mathbf{J} \\
\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \\
\mathbf{E}+\frac{1}{c} \mathbf{v} \times \mathbf{B}=\eta \mathbf{J} \\
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \\
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \boldsymbol{\nabla} \mathbf{v}\right)=\frac{1}{c} \mathbf{J} \times \mathbf{B}-\nabla p-\nabla p_{w}+\rho \mathbf{g}+\boldsymbol{\nabla} \cdot(v \rho \nabla \mathbf{v}) \\
\frac{\partial p}{\partial t}+\nabla \cdot(p \mathbf{v})=(\gamma-1)\left(-p \boldsymbol{\nabla} \cdot \mathbf{v}-\boldsymbol{\nabla} \cdot \mathbf{q}-n_{e} n_{p} Q(T)+H\right) \\
\gamma=5 / 3 \\
\mathbf{q}=-\kappa \hat{\mathbf{b}} \hat{\mathbf{b}} \cdot \nabla T \\
\mathbf{q}=2 \alpha n_{e} T \hat{\mathbf{b}} \hat{\mathbf{b}} \cdot \mathbf{v} /(\gamma-1) \quad
\end{gathered}
$$

+ WKB equations for Alfvén wave pressure p_{w} evolution

Polarized Brightness

Preliminary Results: Interpret with Caution!

(Polarized) Brightness during CR 2068 April 2, 2008

SOHO/LASCO C2

Simulated pB

Mauna Loa
MLSO MK4 CORONA

$$
\begin{aligned}
& \text { MLSO MK4 CO } \\
& 2 \text { APR } 2008
\end{aligned}
$$

$$
\begin{aligned}
& 19: 36: 19 \\
& \text { DOY: } 93
\end{aligned}
$$

$$
\text { DOY: } 93
$$

Preliminary quantitative comparisons of simulated emission with observations are promising: 171 A

Simulations

Preliminary quantitative comparisons of simulated emission with observations are promising: 195 A

Simulations

Preliminary quantitative comparisons of simulated emission with observations are promising: 284 A

Observations
Simulations

Coronal Holes

Preliminary Results: Inte.,

The model predicts 3 mid-lat./eq. coronal holes

The Loch Ness Monster

The Bat

The Dog

Coronal Hole Boundaries

EIT 284A

The Current Sheet

Did I mention tret these are nrolininary results?

Are they serving beer yet?

Important differences exist between old polytropic solutions and new thermodynamic solutions.

(a) Whole Sun Month: Corona

- The improved thermodynamic model will allow us to investigate coronal and heliospheric structure in more detail:
-Quantitative emission comparisons
-Direct comparisons with in situ measurements
-Address topics such as the source of the solar wind
-Comparison of WHI with WSM:
-Two intervals have markedly different structure given 11.5-year separation
-Will allow us to explore the haracteristics of polar and equatorial sources of solar wind
-Results on the web:
-Polytropic solutions are currently available at: http://iMHD.net/stereo -Thermodynamic solutions will be

Summary

 made available at the same location when validated

- The improved thermodynamic model will allow us to investigate coronal and heliospheric structure in more detail:
-Quantitative emission comparisons
-Direct comparisons with in situ measurements
-Address topics such as the source of the solar wind
-Comparison of WHI with WSM:
-Two intervals have markedly different structure given 11.5-year separation
-Will allow us to explore the haracteristics of polar and equatorial sources of solar wind
-Results on the web:
-Polytropic solutions are currently available at: http://iMHD.net/stereo -Thermodynamic solutions will be

Summary

(b) Whole Heliosphere Interval: Corona
 made available at the same location when validated

Questions?

