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The solar corona is a hot, tenuous plasma that expands out-
ward to become the solar wind (1). The corona exhibits a 
structure on a wide range of spatial scales and evolves dy-
namically on timescales that range from seconds to weeks. 
The solar magnetic field provides the energy that drives solar 
flares and coronal mass ejections (CMEs) (2), determines the 
structure of the corona and solar wind (3), and directs the 
propagation of solar energetic particles (SEPs) (4). 

The corona is difficult to observe because of its low den-
sity and proximity to the much brighter photosphere. Obser-
vations of the corona in visible (white) light require a 
coronagraph (on the ground or in space) or can be taken dur-
ing a total solar eclipse. Eclipses provide opportunities to ob-
serve detailed coronal structure that is not accessible to 
coronagraph observations (5). The detailed structure of the 
corona is determined by the magnetic field (B). There are few 
measurements of the magnetic field in the corona, but it is 
routinely measured in the photosphere. 

Coronal magnetohydrodynamic (MHD) models use 
boundary conditions derived from observed photospheric 
fields to extrapolate the field into the corona and produce 
synthetic observables, such as the scattered white light that 
would be observed during an eclipse (6). Most models use a 
single global map of the photospheric magnetic field as their 
boundary condition, which provides a time-stationary ap-
proximation of the average state of the corona gathered over 

a solar rotation of 27 days (7, 8). However, the solar corona 
evolves more rapidly than this, in response to the changing 
photospheric field (9–11). 

A total solar eclipse occurred on 8 April 2024, visible 
across parts of Mexico, the United States, and Canada. This 
was near the maximum of the 11-year solar activity cycle, 
when we expect the photospheric magnetic field, and there-
fore the corona, to evolve rapidly, making a time-stationary 
approximation problematic. To predict the coronal structure 
that would be observed during this eclipse, we developed an 
MHD model that evolves in time, using data assimilation to 
provide near-real-time synthetic observables. 

 
A near-real-time coronal model 
We constructed a time-dependent model of the corona 

that responds to changes in photospheric magnetic fields. As 
input for the model, we used observations of the photo-
spheric magnetic field, which are typically only available for 
the near side of the Sun, in the form of solar magnetograms 
(12). Full-Sun maps of the radial magnetic field (Br) are re-
quired to determine the boundary conditions for the MHD 
model. To represent the regions that were not directly ob-
served, we adopted a surface flux transport model (SFT) (13–
15), which simulates the transport and dispersal of flux across 
the solar surface (14). We used an assimilative SFT (14) to in-
gest the magnetograms, from which it produces a continuous 

A near-real-time data-assimilative model of the solar 
corona 
Cooper Downs1†, Jon A. Linker1*†, Ronald M. Caplan1, Emily I. Mason1, Pete Riley1, Ryder Davidson1, Andres Reyes1, Erika Palmerio1, 
Roberto Lionello1, James Turtle1, Michal Ben-Nun1, Miko M. Stulajter1, Viacheslav S. Titov1, Tibor Török1, Lisa A. Upton2, Raphael Attie3,4, 
Bibhuti K. Jha2, Charles N. Arge3, Carl J. Henney5, Gherardo Valori6, Hanna Strecker7,8, Daniele Calchetti6, Dietmar Germerott6, Johann 
Hirzberger6, David Orozco Suárez7,8, Julian Blanco Rodríguez8,9, Sami K. Solanki6, Xin Cheng10, Sizhe Wu10 
1Predictive Science Inc., San Diego, CA, USA. 2Southwest Research Institute, Boulder, CO, USA. 3NASA Goddard Space Flight Center, Greenbelt, MD, USA. 4Physics and 

Astronomy Department, George Mason University, Fairfax, VA, USA. 5Space Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, NM, USA. 6Max 

Planck Institute for Solar System Research, Göttingen, Germany. 7Instituto de Astrofísica de Andalucía, Consejo Superior de Investigaciones Científicas, Granada, Spain. 
8Spanish Space Solar Physics Consortium, Spain. 9Escola Tecnica Superior d'Enginyeria, Universitat de Valencia, Paterna-Valencia, Spain. 10School of Astronomy and Space 

Science, Nanjing University, Nanjing, Jiangsu, China. 

*Corresponding author. E-mail: linkerj@predsci.com 

†These authors contributed equally to this work. 

The Sun’s corona is its tenuous outer atmosphere of hot plasma, which is difficult to observe. Most models of the corona 
extrapolate its magnetic field from that measured on the photosphere (the Sun’s optical surface) over a full 27-day solar 
rotational period, providing a time-stationary approximation. We present a model of the corona that evolves continuously in 
time, by assimilating photospheric magnetic field observations as they become available. This approach reproduces dynamical 
features that do not appear in time-stationary models. We used the model to predict coronal structure during the total solar 
eclipse of 8 April 2024 near the maximum of the solar activity cycle. There is better agreement between the model predictions 
and eclipse observations in coronal regions located above recently assimilated photospheric data. 

 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia B
erkeley on June 10, 2025

https://science.org/
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fscience.adq0872&domain=pdf&date_stamp=2025-06-10


First release: 10 June 2025  science.org  (Page numbers not final at time of first release) 2 
 

approximation of the state of the photospheric Br. The SFT 
produced a sequence of maps of Br over the entire Sun. 

To simulate the coronal structure and dynamics, we con-
structed a near-real-time predictive model that acquires mag-
netograms from public data sources, assimilates them into an 
SFT, and determines boundary conditions for a time-depend-
ent MHD model of the solar corona. The MHD model simu-
lates the plasma and magnetic field properties of the corona. 
Synthetic observables and diagnostics were calculated from 
the MHD model and output as a continuously updated pre-
diction of coronal structure. The output synthetic observables 
include white light scattered from the coronal plasma and 
emission from the corona in extreme ultraviolet (EUV), visi-
ble, infrared, and x-rays. The output diagnostics are the mag-
netic structure and topology. 

The modeling pipeline is illustrated schematically in fig. 
S1. To run this model in real-time requires that all steps in 
the processing and modeling chain (including the computa-
tionally intensive MHD model) are executed at a faster ca-
dence than the data are acquired, which was hourly for our 
adopted photospheric observations. We incorporated a con-
tingency time (5 to 10 hours) to accommodate any delays that 
occur at any stages of the pipeline. We refer to the output as 
the near-real-time state of the corona because they predict 
the coronal conditions a few hours before the posting of the 
results to our website. 

 
Assimilation, surface flux transport, and boundary 

conditions 
The input observations of the photospheric magnetic field 

were taken from the Helioseismic and Magnetic Imager 
(HMI) (12) on the Solar Dynamics Observatory (SDO) (16) 
spacecraft, which views the near side of the Sun. We adopted 
the HMI 720-s line-of-sight (LOS) near-real-time magneto-
grams at a 1-hour cadence, beginning on 16 March 2024. We 
supplemented these data with additional observations from 
the Polarimetric and Helioseismic Imager (PHI) (17) on the 
Solar Orbiter (SolO) spacecraft, which views the Sun from a 
different angle. From 16 March 2024 to 28 March 2024, SolO 
was close to the Sun-Earth line and offered no advantages 
over HMI data (14). We incorporated low-latency LOS meas-
urements from PHI on 1 April 2024 and vector measurements 
from 1 April and 4 April 2024 (14). The PHI magnetograms 
were obtained with the Full Disk Telescope (FDT), which pro-
vides maps of the solar disk visible from SolO (18). 

Both the HMI and PHI data were mapped to a latitude-
longitude grid in the Carrington reference frame (19) and 
used to derive Br (14). During assimilation, we weighted the 
HMI data by μ4 (where μ = cosθd, and θd is the angular dis-
tance from the center of the solar disk) and discarded those 
with μ < 0.1. PHI data were assimilated only in a specific re-
gion and were unweighted by μ (14). 

An example of the mapped HMI data, acquired on 2 April 
2024 at 09:58 Universal Time (UT), is shown in Fig. 1A. Re-
gions with stronger magnetic field are active regions (ARs). 
Assimilation occurs primarily inside the μ = 0.5 contour, 
which we refer to as the assimilation window. A specific AR 
complex is visible in Fig. 1A, at the edge of the HMI field of 
view. This AR was located at the disk center for HMI on 26 
March 2024 and exhibited additional flux emergence from 31 
March to 2 April 2024, outside the HMI assimilation window. 
In Fig. 1B, we show Br from PHI vector data at nearly the same 
time as that in Fig. 1A. The AR is close to the disk center in 
the PHI observation. The HMI data after assimilation weights 
have been applied are shown in Fig. 1C; if only HMI data were 
used, the AR would not be included in the assimilation. The 
corresponding PHI data assimilation is shown in Fig. 1D. 

The data were assimilated into the High-performance 
Flux Transport (HipFT) model software (14, 15). HipFT simu-
lates the evolution of the photospheric Br by assuming that it 
is passively transported and dispersed by processes in the 
dense photosphere, across the entire solar surface (14). The 
resulting Br global map from HipFT after data assimilation is 
shown in Fig. 1E. These maps were used (14) to produce a 
time-evolving boundary condition for the MHD simulations 
(Fig. 1F). 

The scalar Br we used provides no information about the 
magnetic shear or twist, which stores additional energy in the 
magnetic field. Solar observations have shown evidence of 
shear and twist (20), especially along magnetic polarity inver-
sion lines (PILs) and in ARs. Prominences (referred to as fil-
aments when observed on the disk) are supported, and 
thermally isolated, by these fields (21, 22). This energization 
of the magnetic field can structurally change the shape of the 
overlying streamers and the connectivity of the underlying 
fields. Previous coronal eclipse predictions have included this 
effect in a single boundary map (6). For this time-evolving 
simulation, we automatically identified PILs in Br and intro-
duced shear by applying time-dependent electric fields at the 
boundary (14). 

 
Time-evolving MHD model 
To predict the structure of the corona, we used the Mag-

netohydrodynamic Algorithm Outside a Sphere (Mas) code 
(6). The MHD simulation calculates the three-dimensional 
(3D) plasma density, temperature, vector velocity, and vector 
magnetic field as a function of time (14). From these simula-
tion variables, we calculated synthetic observables for direct 
comparison with observations: visible light scattered off of 
coronal plasma, as observed in white light images; visible and 
infrared line emission, as observed during eclipse totality; 
and EUV and x-ray emission, as observed by spacecraft. 

We drove the model with sequences of Br boundary maps 
that represent the evolution of magnetic flux on the entire 
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solar surface. Self-consistently incorporating the boundary Br 
evolution requires deriving the electric fields, which is gener-
ally not fully constrained (23–26). Previous work used a tech-
nique that drives a full thermodynamic MHD model with Br 
boundary sequences (27). That work used a sequence of maps 
from an idealized but statistically solar-like SFT (28) to re-
duce data artifacts. They modeled a low-activity time period 
near solar minimum when a time-stationary approximation 
should be most applicable but still found that the time-de-
pendent behavior differed from that of time-stationary (29). 
We extended that approach in three ways: (i) We assimilated 
measured photospheric magnetic fields into the model, (ii) 
we studied a highly active period near solar maximum; and 
(iii) we included the energization of the field in the boundary 
conditions. 

The MHD simulation was started on 16 March 2024 (14). 
Continually updated predictions were posted online (30). The 
web pages provided visualizations and movies of the simu-
lated observables, with downloadable image data. We ran the 
model for 32 days and 7 hours, terminating on 17 April 2024 
at 19:00 UT. 

 
Simulated behavior of the solar corona 
In Fig. 2 and movies S4 to S9, we show synthetic observa-

bles (14) output from the simulation, which predicted the ap-
pearance to three instruments: the SDO Atmospheric 
Imaging Assembly (AIA), in multiple filters; the Solar Terres-
trial Relations Observatory (STEREO) Coronagraph Imager-
2 (COR2); and the Solar and Heliospheric Observatory 
(SOHO) Large Angle and Spectrometric Coronagraph 
(LASCO) (14). They show dynamical phenomena in the time-
evolving simulation that would not appear in a time-station-
ary model, including thermal nonequilibrium (Fig. 2A) (31, 
32), dynamic evolution of coronal hole (CH) boundaries (Fig. 
2A) (33), and cool plasma dynamics that occur at magnetic 

nulls ( 0B = ) above pseudostreamers (Fig. 2B) (34) and in 

filament channel formation (Fig. 2C). In Fig. 2C, we also show 
the magnetic squashing factor Q, a measure of the connectiv-
ity and structure of the magnetic field (35, 36). The volume-
rendered Q, a visualization of this structure (6), shows the 
evolution of the field. Emission lines in the visible spectrum, 
observed during eclipses (37, 38), trace the dynamic evolution 
of multithermal structures (14) within coronal streamers (Fig. 
2D). Streamer blobs (9), small-scale eruptions, and CMEs oc-
cur throughout the simulated time period, visible in the syn-
thetic coronagraph images and movies (Fig. 2, E and F, and 
movies S8 and S9), as we expected for the real Sun during 
this phase of the activity cycle. Similar eruptions occurred in 
previous magnetic models (39, 40) that did not calculate the 
plasma properties required to create synthetic observables. 

These dynamic phenomena result from the combination 
of photospheric field evolution and energization of the 

magnetic field; time-stationary states (14) are less energized 
(fig. S7). Because we used an ad hoc approximation of the en-
ergization process, these features do not correspond to real 
events that occur at a given time. Nevertheless, they resemble 
real coronal events. 

The simulated large-scale corona also shows substantial 
evolution over days and weeks, which caused the prediction 
for the corona visible on eclipse day to change over time. In 
Fig. 3, we show the evolution of the predicted coronal bright-
ness and volume-rendered Q. The brightness drops by orders 
of magnitude with increasing distance from the Sun, so we 
radially detrended the simulated brightness (14), similarly to 
techniques used for analog eclipse photography (41). The vol-
ume-rendered Q (6) emphasizes finer-scale details in the 
magnetic field. The predicted structure of the corona changes 
substantially (Fig. 3) in response to changes in the photo-
spheric field. For example, the predictions for a near-equato-
rial streamer on the east limb changed orientation and shape 
over 2 weeks, and the predicted position of a southwestern 
streamer changed substantially. 

In a previous prediction of the 21 August 2017 eclipse (6), 
the last data used as input were taken 10 days before the 
eclipse. That eclipse occurred during the solar cycle’s less ac-
tive, declining phase, and the early coronal prediction ade-
quately captured many features observed on eclipse day (6). 
Comparing our predictions at 10 days and 0 days before the 
2024 eclipse, we found that our assimilative model predicted 
markedly different coronal structures. These changes would 
not have been captured with the previous approach. 

In our assimilative model, the prediction responds to the 
evolution of the photospheric magnetic field, but the result-
ing coronal structure strongly depends on the observer’s view 
of the photosphere. Most observations have been confined to 
the Sun-Earth line. Flux emergence that is not directly visible 
is not detected until the associated ARs rotate into view, 
which could be up to 18 days later. The SolO data were taken 
away from the Sun-Earth line and allowed us to investigate 
how magnetic flux emergence that is not directly visible from 
Earth can affect coronal structure. The emerging AR observ-
able in Fig. 1 was visible in the PHI data but not the HMI 
data. This AR initiated the formation of a bright, coherent 
structure that replaced a more diffuse configuration (fig. S2). 

 
Comparison with an eclipse image 
In Fig. 4, we compare the model prediction from about 10 

hours before totality (Fig. 4A) with a processed image taken 
during the eclipse (Fig. 4B) and synthetic observables 1 week 
later (Fig. 4C). The eclipse photo has been heavily processed 
(14). For comparison, we processed the model outputs using 
a wavelet-based algorithm (42) to approximate the sharpen-
ing applied to the observation. 
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Both the model predictions and the observations exhibit 
a highly complex corona, with multiple overlapping coronal 
streamers and discrete plasma structures. Some of these fea-
tures are reproduced in the model, but others are not. The 
surface magnetic field beneath the east limb changed consid-
erably in the 3 weeks before totality (Fig. 4, D and E). This 
region was visible to HMI from 16 March to 22 March 2024 
but was not viewed again by either HMI or PHI before eclipse 
day. Although it had not yet rotated into view, flux emergence 
on the far side of the Sun influenced the appearance of the 
corona on 8 April 2024, altering the position of the bright 
East-limb streamer (compare Fig. 4, A and B). As the simula-
tion continued after the eclipse, these features were incorpo-
rated over the following days, causing the East limb streamer 
in the model to move poleward (compare Fig. 4, A and C). 
The results demonstrate that the east limb structures are sen-
sitively dependent on the incomplete underlying photo-
spheric data. We also found discrepancies between the 
observation and model prediction near the poles, where the 
field is poorly observed. 

Advantages and limitations of assimilative modeling 
Our near-real-time model of the solar corona was run for 

32 days leading up to and after the total solar eclipse on 8 
April 2024. The model predictions changed within days, ow-
ing to solar activity (Figs. 3 and 4). We found that the simu-
lated corona, continually driven by assimilation of 
photospheric data, is intrinsically different from a time-sta-
tionary one, exhibiting dynamical, solar-like phenomena. The 
time-evolutionary approach is akin to terrestrial weather 
modeling, in which a simulated state of the atmosphere is 
continually updated with assimilated data (43). It also offers 
computational advantages (14). 

Our model predictions were sensitive to the availability of 
photospheric magnetic field observations taken away from 
the Sun-Earth line. Assimilation of an AR that was only visi-
ble in the PHI data modified the predicted coronal structure 
in its vicinity, and incorporation of additional ARs as they 
rotated into view after the eclipse substantially modified 
streamer positions. We suggest that the limited availability of 
that data is the largest source of discrepancies between the 
model and observations. 
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(47). The version of the Mas code used in this study is archived at Zenodo (45). A 
similar version of Mas is available to run on request at NASA’s Community 
Coordinated Modeling Center https://ccmc.gsfc.nasa.gov/models by searching 
for “CORHEL-CME” (48). License information: Copyright © 2025 the authors, 
some rights reserved; exclusive licensee American Association for the 
Advancement of Science. No claim to original US government works. 
https://www.science.org/about/science-licenses-journal-article-reuse 
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Fig. 1. Input data, assimilation, and modeling of solar photospheric magnetic fields. (A and B) Maps of Br in gauss 
(color bar) from (A) HMI and (B) PHI, in Carrington coordinates, for an example timestep near 2 April 2024 10:00 UT. 
Contours indicate values of μ (bottom left legend). The gray rectangles indicate the assimilation region for PHI (14); it 
encloses an AR complex that is at the edge of the HMI field of view but well observed with PHI. (C) The HMI data after 
weighting by μ4, ready for assimilation. (D) The PHI data after uniform weighting within the enclosed AR complex only. 
(E) The global Br map predicted by HipFT after assimilation. Contours show the μ = 0.5 (60°) regions for both SDO 
and SolO, to indicate their respective viewpoints. (F) Same as (E), but for the derived Br boundary condition of the 
MHD model. Animated versions of (A) and (C) are shown in movie S1, and animated versions of (E) and (F) are shown 
in movie S2, for the entire simulation. 
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Fig. 2. Dynamic features in the synthetic observables from the time-evolving model. (A) Synthetic AIA 193 Å images, 
showing thermal nonequilibrium (green arrows) and CH boundary evolution (blue arrows). The color bar is in data 
numbers per second (DN/s), and R☉ is the solar radius. (B) Synthetic AIA 171 Å images, showing cool material evolving 
above a low-lying pseudostreamer null point (magenta arrows). (C) (Top) Synthetic AIA 171 Å image and (bottom) tricolor 
volume rendered (14) Q (6), showing cool material collecting in a filament channel (red arrows). (D) Synthetic Fe x 6734 
Å and Fe xiv 5303 Å emission line intensities, showing multithermal structure and evolution of streamers (gray arrows). 
(E) Synthetic LASCO-C2 coronagraph images, showing the formation and ejection of a streamer blob (teal arrows). The 
color bar shows the product of B☉, the brightness at the center of the solar disk, and the detrending function fp (fig. S8) 
(14). (F) Synthetic STEREO-A (STA) COR2 coronagraph images, showing a CME (gold arrows). Corresponding animations 
of (A) to (F) are shown in movies S4 to S9, respectively.  
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Fig. 3. Time evolution of the prediction over several weeks. Shown are the predicted view from Earth for the time of 
the eclipse (8 April 2024 18:42 UT). Solar north is up. (A to C) Detrended white-light brightness predicted at three 
different times (labeled) during the simulation. (D to F) Volume-rendering of Q (6), which highlights magnetic structure. 
Sets of colored arrows indicate streamer structures that change position over time. An animation of the predictions 
over the entire simulation period is shown in movie S3. 
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Fig. 4. Comparison between the predicted and observed corona during the eclipse. (A) Wavelet sharpened and 
detrended brightness from the model prediction made at 8 April 2024 9:00 UT. (B) Composite eclipse photo processed 
(14) to highlight coronal structures observed during totality. (C) Same as (A), but after an additional week of data 
assimilation. fm is an alternative detrending function (fig. S8) (14). The streamer on the northeast limb (green arrows) 
shifts position between the two predictions, owing to the emergence of several new ARs. The evolution of the sharpened 
brightness is shown in movie S3, middle. (D) Similar to Fig. 1F, but for the boundary condition at 8 April 2024 9:00UT. 
The position of the east limb during the eclipse (solid line) is indicated. (E) Same as (D) but 1 week later, corresponding 
to (C). Gray arrows indicate ARs that were not present in (D). 
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