

Rapid assessment of pandemic impact using clinical episode data from spatially distinct military populations

January, 2013

Steven Riley Pete Riley Predictive Science Inc.

David P. Bacon Science Applications International Corporation

Acknowledgements

NCMI / DTRA / AFHSC

Funded by NCMI contract W81XWH-10-A-0026/DO001 to SAIC

Predictive Science

Imperial College London

Alternate models for interaction of ecological science and health policy

Background and key parameters

- Features of the 2009 pandemic
- Disease dynamics of 2009
- Simulating worrisome future scenarios
- Conclusions and future work

Severity matrix

RO High	Explicit interventions unlikely to be justifie either for containmer or mitigation	Implement most stringent interventions and watch carefully for the population response to the new infection: apparently high Ro may drop rapidly when high CFR fully appreciated	
Low	Consider carefully the cost of non- containment then the costs and benefits of mitigation	e Most stringent Intervention, for e containment or effective mitigation	
	Low	IFR High	

Adapted: WER 2009

The basic reproductive number

"The average number of secondary cases generated by a typically infectious individual over the entire course of their infection"

Simple epidemic models explain the trajectory of incidence

R₀ and the cumulative attack rate

Severity pyramid

Severity matrix

	Low	IFR	High
Low	Consider carefully the cost of non- containment then the costs and benefits of mitigation	Mo Inte con effect	st stringent rvention, for tainment or ive mitigation
RO	unlikely to be justified either for containment or mitigation	stringer and w for th respon infecti high rapidly fully	nt interventions vatch carefully ne population nse to the new on: apparently Ro may drop when high CFR appreciated
gh	Explicit interventions	Imp	lement most

Adapted: WER 2009

Overview

Background and key parameters

• Features of the 2009 pandemic

- Disease dynamics of 2009
- Simulating worrisome future scenarios
- Conclusions and future work

The Marsden-Haug "ILI-small" criteria consistent with CDC ILI cases.

Synchronisation between civilian and military populations

Correlation of peak times

Pearson Correlation Coefficient: 0.89

Time of Civilian Peak (date in 2009)

Outliers: Camp Lejune, Quantico.

Base epidemic profiles

Overview

- Background and key parameters
- Features of the 2009 pandemic
- Disease dynamics of 2009
- Simulating worrisome future scenarios
- Conclusions and future work

Transmissibility changes over time

Estimation of Severity for 2009 Pandemic

MPZ-99506

Estimation of Severity for 2009 Pandemic

MPZ-99506

Estimate of Ntotal from AFHSC clinical visits

Outliers: Mayport naval Station, 29 Palms, Ft. Riley,

The largest 8 military populations by zip code

The model fit estimates *R*₀ and *pC* for each base over 10,000

Severe Infection Rate

Increasing intrinsic seasonality

T0 (weeks)

Red points are the top 30 bases.

Overview

- Background and key parameters
- Features of the 2009 pandemic
- Disease dynamics of 2009

Simulating worrisome future scenarios

Conclusions and future work

Overview

- Background and key parameters
- Features of the 2009 pandemic
- Disease dynamics of 2009
- Simulating worrisome future scenarios

Conclusions and future work

Manuscripts

Paper 1 in revision for PLoS Computational Biology:

Multiple estimates of transmissibility for the 2009 influenza pandemic based on influenza-like-illness data from small US military populations Pete Riley^{1,*}, Michal Ben-Nun¹, Richard Armenta¹, Jon A. Linker¹, Angela A. Eick², Jose L. Sanchez², Dylan George³, David P. Bacon⁴, Steven Riley^{1,5} 1 Predictive Science Inc., San Diego, CA, USA 2 Armed Forces Health Surveillance Center, Silver Spring, MD, USA 3 National Center for Medical Intelligence, Fort Detrick, MD, USA 4 Science Applications International Corporation, McLean, VA, USA 5 MRC Centre for Outbreak Analysis and Modelling, Imperial College London, UK * E-mail: pete@predsci.com

- Paper 2:
 - Rapid assessment of pandemic impact using clinical episode data from spatially distinct military populations, Pete Riley, Michal Ben-Nun, Angela A. Eick, Jose L. Sanchez, Dylan George, David P. Bacon, and Steven Riley, *In prep.*

Conclusions

- DMSS data could be useful in real-time for assessing pandemic severity
- "Simple models" of 2009 capture key parameters
- Accurate population size will improve estimates
- Single analytical framework can address planning and response goals

Future Directions

A prototype tool to perform analysis described here

- Clearly adds to available tool set
- Substantial additional motivation for making key data be available more quickly

Additional modeling science to enable seasonal use

– Winter 12/13 proving to be an excellent example

Process of ongoing tool / scientific refinement