What determines CME velocities ?

Apparently many important (partly related) parameters, e.g.:

- size, complexity, and strength of source region
- available free magnetic energy
- magnitude of accompanying flare
- length and number of PILs
- others ?

One important parameter: overlying (ambient) coronal field

Role of overlying field for CME velocities: 1.) morphology

TABLE 1 Statistical Properties of the 99 Halo CMEs from 2000 to 2004			
Parameter	Type 1	Type 2	Type 3
Number	39	46	14
Percentage	39%	47%	14%
Median speed (km s ⁻¹)	728	1208	1443
Mean speed (km s ⁻¹)	$883~\pm~403$	1345 ± 596	1530 ± 736

Type I: below HCS

Type 2: close to open field region

Type 3: below Pseudo-streamer

Liu Y. (2007)

Eruption within or close to Pseudo-streamer or "open" field \rightarrow fast CME

Role of overlying field for CME velocities: 2.) decay index

Strong decay of external field \rightarrow fast CME

Modeling a fast CME: initial field & full MHD solar wind relaxation

global dipole + quadrupolar active region (large decay index)

relaxation: coronal field opens up + streamer forms above active region

Modeling a fast CME: adjust coronal heating parameters

Modeling a fast CME: flux rope insertion

insert (modified) TD model (in equilibrium) into stabilizing ambient coronal field

Modeling a fast CME: eruption

- B_max $\approx 600 \text{ G}$
- AR flux \approx 2 * 10^22 Mx
- max. CME speed \approx 2000 km/s
- W release $\approx 1.5 * 10^{32}$ ergs

Backup slides

Pseudo-streamer

- PS: amount of stabilizing closed flux determined by size of parasitic polarity
- HS: amount of closed flux essentially determined by height of SW acceleration region

 \rightarrow eruptions from PS have less closed flux to overcome

Torus instability

- ideal MHD instability; occurs if overlying field drops sufficiently fast with height
- acceleration profile depends on decay index $n = -h d(\ln B)/dh$ of overlying field:

 $n \approx 1.5$ (quiet Sun): weak & long-lasting acceleration (gradual)

n > 2 (active regions): strong & short acceleration (impulsive)