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1 Proposal Summary

Objectives: The primary objective of the proposed work is to derive the most robust and accurate
prediction of the interplanetary magnetic field, nominally at least 24 hours in advance. Additionally,
our approach will also provide estimates of solar wind speed, density, and temperature.
Methodology: Our approach is unique in that it focuses not primarily on understanding the
physical processes that modulate the interplanetary magnetic field (although we anticipate that this
will occur as an inevitable byproduct of the work), but with the single-minded objective of providing
the most robust estimation of the interplanetary magnetic field, primarily at 1 AU. To achieve
this, we will assemble a comprehensive range of viable techniques for predicting the interplanetary
magnetic field, applying rigorous statistical methodologies to discriminate between, and combine
them as appropriate. These include, but are not necessarily limited to: persistence (which provides
the base prediction that any approach must exceed); historical pattern matching (using k-nearest
neighbor, Euclidean distance, and dynamic time warping); neural networks; empirically based CME
models (e.g., spheromak-cone model); and first-principle, physics-based models. A priori, we do not
know which technique(s) will be superior; notably, though, we will pursue those that add the most
value to the prediction, which may lead us in directions that we had not fully anticipated. Moreover,
we will employ several data mining techniques (e.g., classification, clustering, frequent patterns
discovery) to better understand the data-stream. Our team was carefully chosen to encapsulate the
wide range of data collection, analysis, and both statistical and physics-based modeling expertise
necessary to achieve our goals. Additionally, our team includes members from the operations arena.
We will also derive metrics for each of the in-situ measurements being predicted. We will quantify
when, where, and to what extent they agree with the observations. Moreover, we will provide robust
statistical measures of the uncertainty in the prediction. By so doing, we will provide necessary
targets that other contemporaneous, or subsequent investigations must improve upon.
Proposed Contributions to the Focus Team Effort: Our proposed effort seeks to address
all goals of this Focused Science Topic. Specifically, we will be able to provide estimates of the
three components of the interplanetary magnetic field at least 24 hours in advance (and even up
to 4-5 days within commensurately larger uncertainties). Additionally, the approach will allow
us to provide predictions at other locations such as Mercury (Messenger) and Jupiter (Juno) and
elsewhere (Solar Orbiter, Solar Probe+). Finally, our methodology lends itself to prediction of the
remaining plasma parameters, including solar wind speed, density, and temperature.
Team Members: Pete Riley, Roberto Lionello, Jon A. Linker (PI, Co-I, and collaborator, respec-
tively, PSI), Piet Martens and Rafal Angryk (Co-Is, Georgia State University), Chris Russell and
Roger Ulrich (Co-Is, UCLA), Vic Pizzo, Curt de Koning, and Alysha Reinard (Co-Is, NOAA), Todd
Hoeksema and Yang Liu (Co-Is, Stanford), Tim Horbury (Collaborator, Imperial College, London),
and Matt Owens (Collaborator, University of Reading).
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2 Science, Technical Aspects, and Management

2.1 Scientific Background

2.1.1 Introduction

In this proposal, we outline a program to derive the most robust and accurate prediction of the
z-component of the interplanetary magnetic field (IMF Bz) with up to 24 hours advance warning. In
essence, we aim to build up a prediction of IMF Bz by combining several distinct elements that arise
on different temporal and spatial scales: slowly-evolving stream structure; rapidly-changing large
scale perturbations from (interplanetary) coronal mass ejections ((I)CMEs); and high-frequency
fluctuations from waves and turbulence. To achieve this, we will combine a diverse set of potential
predictive techniques, ranging from statistical models to first principles algorithms, incorporating
both remote solar and in situ observations. To quantify our success, we will develop a set of metrics
that will reliably track our progress during the course of the investigation.

Conceptually, it is illuminating to consider the various processes that contribute to a non-zero
z-component of the IMF. The large-scale quiescent heliospheric magnetic field has no net Bz. Waves
and turbulence can be superposed on top of this large-scale picture (e.g. Horbury & Balogh, 2001),
but, in and of themselves, they do not actively drive substantial space weather. From a geoeffective
viewpoint, large solar eruptions generating coherent flux rope structures that propagate relatively
undisturbed to 1 AU represent the major source, particularly if the axis of the flux rope lies in,
or near to, the ecliptic plane. In addition, fast CMEs drive fast-mode shocks ahead of them that
compress the IMF, amplifying the wave/turbulent fluctuations. Furthermore, draping of the large-
scale field around the ejecta can result in large, sustained values of Bz (Gosling & McComas, 1987).
Finally, it is worth noting that it is the z-component of the IMF in Geocentric Solar Magnetospheric
(GSM) coordinates that is relevant for most space weather applications. The semiannual variation
in geomagnetic activity due to this so-called “Russell-McPherron” effect (Russell & McPherron,
1973) is easily accounted for.

Ulysses in situ Observations Simulated Profiles at Ulysses
shock

ejecta

shock ejectad

Figure 1: Comparison of (a) observed plasma and mag-
netic field parameters with (b) simulated parameters for an
ICME observed by the Ulysses spacecraft at 5 AU and 22◦S
heliographic latitude. Adapted from Riley et al. (2003).

Since the previous Focused Science
Topic (FST) on this subject in 2007, mod-
els have improved, both remote and in situ
observations have expanded, and our un-
derstanding of both the eruption process
and evolution of CMEs through the solar
wind is better. In spite of many advances,
it is not clear that any of them have im-
proved our predictive capabilities: Predict-
ing IMF Bz with any reliability, during dis-
turbed time periods is a challenging and
perhaps under-appreciated endeavor. Yet
it is precisely during these geoeffective in-
tervals where our predictions must be the
most accurate and thus should have the
highest priority.

It is important to distinguish between studies that aim to understand the magnetic-field prop-
erties of particular events retrospectively from those that attempt to predict them in advance.
Consider, for example, the comparison shown in Figure 1. This could be interpreted as a validation
that global MHD models are capable of reproducing the essential features of ICMEs. If so, it might
further be inferred that such models should be a useful predictive tool. While we do not dispute
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Magnetic Maps:  MDI, MWO, NSO/KP,  NSO/GONG, 
NSO/SOLIS, WSO, HMI
Other remote observations: EUV, X-Ray, 10830. 
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Figure 2: Main elements of our proposed Bz Forecasting Framework (BFF). Extensive use will be made
of both remote solar observations and in situ measurements (green), a range of physics-based and statistical
models (brown), and use of model output (red) for validation and prediction (blue). See text for more details.

that this will ultimately transpire, we caution that such comparisons necessarily amplify the positive
aspects of the comparison and, inadvertently, convey the sense that the model is more accurate and
robust than it really is. To emphasize this point, consider that this event was chosen because: (1) it
was extremely simple; and (2) it matched the model results. The serendipity of identifying such a
simple event for which one of our limited number of simulations matched well cannot be overstated.
In contrast, if we are seeking to predict an event, we do not have the luxury of hindsight to choose
the model result that most matches the observations.

2.1.2 The Current “State of the Art”

Currently, although a number of ideas and models have been proposed, there are no reliable pre-
dictions for IMF Bz. Perhaps the most defensible model at present is that of “persistence,” that is,
the value of Bz in the next hour, day, or even week is its current value. On average this value will
be zero. During the passage of large, coherent magnetic clouds (MCs), on the other hand, it may
have a sustained value that is substantially different from zero. Previous studies that have assessed
our ability to predict the bulk solar wind speed (an undoubtedly easier quantity to forecast than
Bz) have revealed that models are only modestly, if at all, better than persistence (e.g. Norquist
& Meeks, 2010). Additionally, we can define “recurrence” as a prediction based on observed values
27 days ago (Owens et al., 2013). Yet, such predictions are likely to be valid only under “all quiet”
or “all clear” conditions, which makes the most sense for parameters that have systematic varia-
tions during quiescent conditions, such as speed, density, and temperature, and even the radial and
azimuthal components of the IMF. The periods of most interest, however, when Bz deviates from
zero for substantial periods of time, occur during the passage of a fast CME.
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2.1.3 Overview of Proposed Effort

Two quite diverse avenues can be pursued to substantially improve our forecasting ability. First,
using a combination of observations and models we can physically propagate what we observe at
the Sun to the vicinity of the Earth. We will outline a broad array of observational signatures and
spectrum of models that can help us accomplish this. Second, statistically extrapolating what we
observe in the vicinity of the Earth (and near the Sun) forward in time we can predict how Bz will
change over the next 12-24 hours. The first approach will lead to predictions that can be made
days in advance of the observations but, as we will discuss, is fraught with uncertainty. The second
approach, while limited to near-term predictions will likely provide more accurate forecasts at least
initially. The combination of the two, we believe, will also be synergistic: The statistical modeling
(or data mining) approach may unveil new relationships that indicate physical processes that have,
thus far, been ignored by the physics-based models. Similarly, the physics-based models may offer
guidance as to which parameters to data-mine and correlate. Our proposed investigation will create
the necessary infrastructure to develop both paths, quantitatively estimating their accuracy and
providing key confidence intervals. Additionally, by employing simple ensemble techniques, we can
combine the various approaches yielding an optimized forecasting scheme that can incorporate new
approaches as they are uncovered.

Figure 2 summarizes the essential components of our proposed effort, which we call the Bz

Forecasting Framework (BFF, because we hope it will be!). Each of these modules will be described
in more detail in the sections that follow. Here, we make several remarks. First, the overall
framework is the most important aspect, not any specific model. Our team will develop a toolkit
that can be accessed and used by all team members initially, and later, the community-at-large,
allowing them to objectively test various approaches. Second, our approach is comprehensive. We
cannot predict which path will provide the optimum prediction. Indeed it is likely to be a composite
of approaches which, when appropriately combined, will lead to the best forecasts. Moreover,
different techniques will likely mature and/or supersede others either during, or after the lifetime
of this study. Third, the package we propose to develop will be based on standard, open source
programming practices. This will allow a greater number of people to contribute to it and extend
its life beyond the confines of a four-year program.

2.2 Scientific Objectives

The primary scientific objective of this investigation is to develop, apply, and test a comprehensive
suite of prediction algorithms, including new ones conceived of during the course of the investigation,
to provide the most reliable and robust prediction of IMF Bz. We will also compute the other
magnetic field components (Bx and By) as well as the bulk solar wind speed, density, and plasma
temperature. To accomplish this goal requires that we:

1. Develop an easy-to-use framework for testing Bz prediction algorithms;
2. Develop a rigorous set of metrics with associated skill scores that include estimates of uncer-

tainty;
3. Develop benchmark datasets (same data sources, sets, and sampling techniques);
4. Test the currently most promising statistical and numerical modeling techniques;
5. Develop a prioritized set of new predictive techniques; and
6. Provide the completed framework as an open source resource to the scientific community.
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Figure 3: (a) Illustration of a three-layer neural network. (b) Schematic of accuracy error when the ANN is
overfit (solid line) or not (dashed). The “estimate of complexity” could be the number of iterations, neurons,
or hidden layers. (c) Illustration of dynamic time warping for Bz time series.

2.3 Perceived Impact of the Proposed Work

The proposed data analysis and modeling techniques, together with the application of metrics and
skill scores represent a comprehensive and unique approach to solving a specific applied problem.
If successful, our work will substantially advance our ability to forecast potentially geoeffective
conditions 24 hours (and, in principle, up to four days) in advance. At the very least, we will
be able to accurately quantify the current state of predictive capabilities, discriminate between
approaches that are likely to be successful from those that are not, and provide a framework that
future investigations can incorporate.

2.4 Technical Approach and Methodology

2.4.1 Introduction

We propose to apply a range of statistical and physics-based modeling techniques to uncover the
optimum combination of approaches that can provide the most accurate prediction of Bz.

2.4.2 Statistical Models for Predicting Bz

Over the last decade or so, data mining and knowledge discovery approaches to revealing and
predicting a range of phenomena within datasets have blossomed (Han et al., 2006; Pang-Ning et al.,
2006). Moreover, a variety of publicly available and scientifically vetted toolkits have been developed
for applying these techniques relatively easily (e.g., Weka, DBMiner, Rapidminer, Rattle, MCL++).
These machine learning approaches have not yet been widely embraced in the solar/heliophysics
community. In part, this may be due to their limited ability to make accurate predictions as well as
the hurdle of understanding new concepts. However, a more likely explanation is that, for the most
part, such techniques do not directly address the question of why particular relationships exist.

2.4.2.1 Artificial Neural Networks: Artificial Neural networks (ANNs) are models inspired
by neurons in the brain. Conceptually, ANNs consists of three layers: an input layer, one or
more “hidden” layers, and an output layer. Figure 3(a) illustrates the connectivity of nodes (i.e.,
“neurons”) between these layers. Biological connections between neurons have been simulated in
ANNs using links between the neurons (i.e., graph nodes) that have adaptive weights, and an
activation function that can cause the neuron to fire with a value dependent on the type of function
and the neuron’s activation threshold. Intuitively, ANNs (particularly the multi-layer feed-forward
techniques) can be thought of as a nonlinear generalization of a linear filter. ANNs have found
modest success in the prediction of geomagnetic indices based on solar wind parameters (Lundstedt,
1996). Of more relevance, Wintoft & Lundstedt (1999) attempted to predict the daily solar wind
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speed at 1 AU using a neural network based on flux tube expansion factor (computed from a
potential field source surface (PFSS) model). They were able to obtain correlation coefficients as
high as 0.57 for monthly averages, which dropped to 0.38 for daily averages. These disappointing
results are likely more due to the inputs rather than the technique, as Riley & Luhmann (2012)
and Riley & Linker (2014) have shown that expansion factor alone is a relatively poor predictor of
solar wind speed, the distance from the coronal hole boundary providing much higher correlations
(∼ 0.75). Liu et al. (2011) applied a particular type of ANN technique, known as support vector
regression (SVR) to forecast solar wind velocity. They were able to predict speeds with an accuracy
of over 90%; however, this was limited to a 3-hour prediction, and did not perform well during CME
intervals.

Qahwaji et al. (2008) applied ANN (the Cascade Correlation Neural Network algorithm) as
well as Support Vector Machines (SVM) techniques to predict CMEs based on the properties of
flares (intensity, duration, duration of decline/growth). While promising, the approach suffers from
several issues, including false positives, the use of only M/X-class flares, and the neglect of erupting
filaments/prominences.

The most common error in using ANNs is a lack of respect for the complexity of the models they
are capable of generating (whilst still being only visible as a “black box” to the user). To understand
this more clearly, consider the analogy of the curve-fitting problem: Intuitively, we invoke “Occam’s
razor”, that is, the principle of parsimony, and choose the lowest-order polynomial that still fits our
data. The main challenge is that the nonlinear models that the ANN built to reflect our data are so
complex that they must be treated as a “black box.” This often leads to the creation of ANNs that
show excellent results during the training phase (interpolation), but which perform poorly when
applied to the prediction of future, or unseen data (extrapolation). The greater the number of
hidden layers, or even nodes in the ANN, the higher the risk. This problem is well known in fields
outside Solar Physics (Astion et al., 1993; Alman & Ningfang, 2002; Tetko et al., 1995), leading
researchers to validate the quality of their ANN using the entire error of the training charts and
not simply a single error measure (Figure 3(b)). In our investigation, we will monitor our ANNs
for such errors and minimize their impact.

2.4.2.2 Pattern Matching Approaches: A precursor to the pattern matching approaches
that we plan to incorporate into our analysis was developed by Chen et al. (1996). Their insight
relied on identification of well-defined and coherent MC structures. They suggested, and presented
examples whereby certain classes of long-duration events could be identified at 1 AU by in-situ
spacecraft relatively early through the rotation of the large-scale magnetic field and the trailing
portion (up to 80%) could be predicted by extrapolating a sinusoidal pattern forward in time.
Particularly for flux ropes whose axes are located in the ecliptic plane and points along the azimuth
direction, the variation in Bz approximates a ±sine function. If the helicity of the event is such that
a northward excursion of Bz occurs first, a reliable prediction of both the timing and magnitude
of the all-important southward excursion can be made. Although this may appear to limit the
applicability of this technique to a certain class of events, it is precisely this signature that results
in the largest geomagnetic consequences. We will develop several refinements to this basic idea,
including flux-rope fits to real-time data and machine learning concepts, such as pattern recognition.

Figure 4 illustrates how simple pattern matching techniques can be employed to predict, at least
near term, the evolution of Bz, particularly when there are coherent variations, such as during the
passage of a MC. The prediction was made by taking the previous 24 hours of Bz data from a point
shortly after a large ICME was detected by Wind and sliding this window along the entire time
series back to 1975, computing the Euclidean distance (essentially an estimate of χ2). We then chose
the best 20 matches and used the data during the following 24 hours of each match as a prediction
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for the current time. These are shown by the grey traces in Figure 4. The ensemble average of these
traces is shown in red and compared with the actual data (thick black line). No attempt was made
to “tune” or tweak this comparison, yet the correlation was ∼ 0.8. We believe it demonstrates that
these techniques, and important refinements to them may be a useful addition to our prediction
tool chest. Our illustration here has been limited to a simple one-to-one mapping of the profiles.
Given the variability in scale size of transient phenomena, we anticipate incorporating dynamic time
warping (DTW, Figure 3(c)) to uncover similarities in time series where the structures are either
moving at different speeds, have expanded in a non-linear way (Keogh & Pazzani, 1998; Ding et al.,
2008; Keogh et al., 2001, 2004), or have substantially different spatial/temporal scales (Moldwin
et al., 2000).
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Figure 4: Example of pattern matching through in-
situ measurements, predicting Bz for next 24 hours:
Predictions based on the top-20 patterns identified
from the Euclidean distance, together with the actual
data (black) and the ensemble average prediction (red),
based on these realizations (CC ∼ 0.8).

To the extent possible, we will also extend
this pattern matching to incorporate feature
recognition at the solar source of the CMEs.
In fact, solar feature detection in SDO observa-
tions has already yielded some surprises, chal-
lenging previously established “rules of thumb.”
Martens et al. (2014), for example showed that
the hemispheric chirality preference for fila-
ments, established by Pevtsov et al. (2003), ap-
pears to disappear during parts of the decline
of cycle 23 and is less well established during
the onset of cycle 24. To the extent that fila-
ments and sigmoids can be used as proxy indi-
cators of ICME properties, and particularly for
any inference on flux rope axis orientation, these
quantitative trends can be incorporated into a
comprehensive model.

2.4.3 Empirically-based Models of ICMEs

We can group event-based models under the
monikers “empirically-based” and “physics-
based” models in order to distinguish them from
the statistical models described above, while
recognizing that they encompass a wide range
of overlapping concepts and techniques. Thus, these classifications are, at best, intended to be a
helpful guide. Indeed, during our proposed effort, we envisage even more complex combinations of
the basic approaches described below.

2.4.3.1 Feature Tracking Approaches: Tracking features through various remote solar and
in-situ measurements, although simple, can be a powerful way to infer a variety of properties of a
CME as it passes through the observing window. DeForest et al. (2013) outlined a comprehensive
analysis of the December 12, 2008 CME from its origin in the low corona through its interception
with near-Earth spacecraft. While the study identified the origin of various features of the ICME,
from a predictive standpoint, it also illustrated the unique capabilities of heliographic imagers to
provide real-time global information on the structure as it propagates from the Sun to 1 AU. With a
goal of providing 24-hour predictions, these observations can provide either direct information that
can be incorporated into a prediction of plasma conditions that will occur at 1 AU, or, as constraints
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to global MHD models, which themselves may contain the important magnetic field information.
At the least, such observations can provide key timing information for both the CME-driven shock,
the following sheath region, and the flux rope/ejecta itself.

2.4.3.2 Transit Time Approaches: A number of techniques have been developed to compute
the arrival time of interplanetary (IP) shocks, which, while not providing information on Bz directly,
alerts the prediction algorithm that sheath region and possibly a subsequent MC will be encountered.
The Shock Time Of Arrival (STOA) model (Dryer & Smart, 1984), for example, relies on the time,
location, drift speed, and duration of radio burst measurements. Kadinsky-Cade et al. (1998) used
IMP-8 and Wind data to evaluate this model during the interval 1991-1997 and found that the
average deviation between the predicted and actual arrival of the shock was ±36 hours. Riley &
McComas (2009) developed a set of fluid conservations to infer near-Sun properties of CMEs from
their in-situ measurements, which was validated against other techniques, and could be adapted
to estimate the transit time for ICMEs. Other approaches relying on white-light observations and
effective acceleration profiles (Gopalswamy et al., 2001) and low-frequency radio measurements
(Reiner et al., 2007) have also been proposed. Gopalswamy et al. (2005) estimated typical errors of
∼ 10.7 hours in the predicted arrival time of the shock.

Vandegriff et al. (2005) described a technique for predicting the arrival time of interplanetary
shocks at Earth based on energetic particle signatures observed at 1 AU prior to the shock’s arrival.
They found that the predicted arrival time of the shock was accurate to within 8.9 hours 24 hours
in advance and 4.6 hours when the shock was 12 hours from the spacecraft. Although these uncer-
tainties are not obviously better than NOAA’s Space Weather Prediction Center (SWPC) estimate
of median errors of ±6 hours based on a prediction made several days in advance, they offer a
unique extra piece of information – that the event has generated a shock that will intercept Earth,
a result that cone-model-based predictions sometimes miss. Moreover, in principle, analysis of the
energetic particle signatures can provide insight into the strength of the following shock, which in
turn, provides albeit indirect information about the properties of the driver ejecta.

2.4.3.3 Relating Solar Signatures to 1 AU Measurements: Numerous attempts have been
made to relate magnetic structures observed in connection with a solar eruption and the subsequent
properties of the magnetic flux rope observed at 1 AU. These have met with mixed success. In
an early study, Hoeksema & Zhao (1992) correlated the source regions of five strong −Bz events
observed at 1AU, inferring that the computed field orientation at the point in the corona where the
acceleration of the ejecta ceased matched with in-situ measurements. Bothmer & Schwenn (1998)
found a good correlation between MCs and large quiescent filament disappearances. Specifically, the
magnetic orientation of the prominence axis, the polarity of the overlying field lines, and the helicity
pattern of the filaments “agreed well” with the properties of the MCs. In another study, Leamon
et al. (2004) related the magnetic properties of MCs to their associated active region sources. In
particular, they looked at the helicity, finding that the twist within the cloud was typically an order
of magnitude greater from the twist measured in the active region. More recently, Yurchyshyn
(2008) found strong correlations between: (1) the direction of the axial field in EIT arcades and
elongations in halo CMEs; and (2) the tilt of the coronal neutral line and the axis of MCs. They
speculated that in some cases, the MC axis tended to align with the heliospheric current sheet.
CMEs often rotate through substantial angles as they propagate through the corona (e.g. Török &
Kliem, 2005), for reasons that have not yet been well established.

The relationship between solar and in-situ signatures can be probed and quantitatively described
using the approaches outlined here. The handedness of an active region, and hence the orientation
of the MC axis, for example, can be inferred from localized MHD calculations driven by vector
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Figure 5: (a) Hourly-averaged magnetic field magnitude and three components during a MC observed at
Earth (Wind) on April 18, 2002. The 50 realizations shown (grey curves) were fit using MCMC to only the
solid green curves, the dashed red line indicating ‘future’ data that had not yet been observed. (b) As (a) but
the entire interval (solid green line) was used to fit to the flux rope model. The two vertical lines in (a) and
(b) mark the MC boundaries. (c) “Whisker plot” showing; (blue boxes) the reduction in uncertainty (RMSD)
in the fit; and (red curve) the standard deviation of the ensembles, as more data points are observed.

magnetograms. Moreover, the global location and hence orientation of the HCS can be determined
from global MHD simulations. While qualitative inferences of the degree of match may not be
sufficient to provide a quantitative prediction scheme, the results suggest that a statistically-based
approach, such as described in Section 2.4.2.2, which incorporates all of the potentially relevant
features, may yield a predictive capability.

2.4.3.4 Flux Rope Fitting Predictions: Force-free (e.g. Russell et al., 1990; Lepping et al.,
1990) and non-force-free (e.g. Mulligan & Russell, 2001; Riley et al., 2004; Owens et al., 2006;
Reinard et al., 2010) fitting models have been used successfully for many years to reconstruct
the basic properties of flux ropes as they pass over the spacecraft. However, a novel, and as yet
unexplored application is to use these fits as a predictive tool, in some sense, a refinement of the
Chen et al. (1996) idea (Section 2.4.2.2).

Figure 5 illustrates how such an approach might reasonably provide a prediction of all three
components of the field, as well as its magnitude up to 24 hours in advance. We fitted the April
18, 2002 MC using a cylinder flux-rope model as described by Marubashi et al. (2007) with six
parameters: intensity and radius of the MC, latitude and longitude of the cylinder axis, impact
parameter (distance from the cylinder axis to the spacecraft trajectory), and handedness of the
magnetic field helicity. The joint posterior distribution for the model parameters was determined
using a Metropolis-Hastings Markov Chain Monte-Carlo (MCMC) procedure (Riley et al., 2013a).
At each step in the chain, a new set of parameters was sampled from a uniform distribution and
used to calculate a model profile for the magnetic field. The root mean square deviation between
the calculated and observed field was then used in a standard rejection method to determine if the
move should be accepted or rejected. For each case we simulated 50 MCMC chains with 5 × 107

steps. Figure 5(a) shows 50 realizations (grey) when only 30% of the data are used to fit the MC.
The scatter in these profiles gives a measure of the uncertainty in the ensemble average. Figure 5(b)
shows the fit when all data points are used. The final panel (c) demonstrates how the uncertainty
in the estimate decreases as more data points are added to the model fit, providing a quantitative
estimate of the error.
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Figure 6: (a) and (b): Two 3-D views of ICME as it approaches 1 AU. The legends to the left of each
panel indicate what parameters are being displayed. A selection of interplanetary magnetic field lines are also
shown. (c): Comparison of a hypothetical observer at 1 AU with STEREO A velocity measurements. This
ICME was launched with an initial speed of 2500 km/s, consistent with remote solar observations.

2.4.3.5 Cone-Model ICMEs: A subset of PSI’s modeling suite, CORHEL, consists of the
WSA-Enlil model, with a cone-model CME generator, which recently became the National Weather
Service’s first space weather model, running real-time at NOAA/SWPC (Farrell, 2011; Pizzo et al.,
2011). We have developed a similarly capable version of the cone model (Riley et al., 2014) using a
recently developed massively parallel interplanetary version of our global MHD algorithm (Lionello
et al., 2013). Several approaches exist for deriving the initial parameters to drive the simulation
(Zhao et al., 2002; Pizzo & Biesecker, 2004; de Koning & Pizzo, 2011), but for all, CMEs are treated
as purely plasma ejecta, specifying the location of ‘launch’ (on a sphere of height 21.5RS), direction,
speed, density, and duration (or width). The lack of magnetic structure within the ejecta precludes
it from giving meaningful predictions of the flux rope field. It can, however, provide information on
the field in the sheath region, which, at least for fast events, is draped over the ejecta. We have also
begun investigating techniques for incorporating magnetic fields within the ejecta. One promising
idea was motivated by more theoretical results from modified Titov-Demoulin (TDm) simulation
results (see Section 2.4.4.1), suggesting that substantial reconnection could occur under a flux rope
leading to a spheromak-like structure. Although we found that the in-situ profiles from such an
event can mimic the observed rotations within observed ejecta, it remains to be seen whether this
can lead to a robust estimate of flux rope fields. An alternative idea, which would allow one to
retain the simplicity of the cone-model approach would be to “kinematically” incorporate, say, a
force-free type flux rope close to the Sun (e.g. Owens et al., 2006), using the evolving velocity field
to distort the flux rope as it is propagated through the inner heliosphere (Riley & Crooker, 2004).
This would require knowledge of the orientation of the flux rope axis, which could be inferred from
several remote solar observations, although not without substantial caveats.

Krall & Cyr (2006) developed a simple technique for parameterizing a three-dimensional flux
rope based on white-light observations. The synthetic images produced capture many of the features
observed in the eruption of simple limb events, and, although they did not develop it, in principle,
the technique can be used to estimate the orientation of the flux-rope axis. This, however, would
require observations at quadrature to predict Bz at Earth. As with many of these techniques, the
concept is simple, its implementation is straightforward, but its ability to predict Bz has not been
ascertained. Thus, it represents an ideal candidate for testing.

2.4.3.6 Predicting Bz within Sheath Regions of ICMEs: Echer et al. (2008) estimated
that the sheath regions of ICMEs are responsible for ∼ 25% of all intense (Dst < −100nT) geo-
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magnetic storms. Thus, an accurate estimate of these intervals alone is an important component
of any prediction scheme. We envisage at least two processes that could contribute to producing
a non-zero Bz within sheath regions. The first, as already noted, is due to the process of draping.
As ambient solar wind is swept up, field lines are caught up and dragged through the solar wind
by the ejecta. A second, and more subtle effect, however, concerns the effects of the shock itself.
It is well known, based on the Rankine-Hugoniot (RH) relations, that the magnetic field changes
direction across a shock (e.g. Priest, 1982). Specifically, the magnitude of the tangential (relative
to the shock normal) component is not conserved. Across a fast-mode shock this translates into
a compression, with the resulting effect that the magnetic field vector is deflected away from the
shock normal. Thus, with prior knowledge of the likely properties of the shock as it passes Earth,
the amplification of the tangential component can be estimated and converted into a Bz compo-
nent (Horbury, Personal Communication, 2014). In principle, this effect should already be directly
included within global cone-model simulations such as Enlil. However, this information can also
be derived independently from Heliospheric Imager observations when available, which will provide
estimates of the shock/sheath orientation and strength, coupled with more reliable estimates of the
modeled ambient solar wind at Earth. Moreover, global MHD models of CME ejecta themselves are
not capable of reproducing the small-scale (but large amplitude) fluctuations produced by waves
and turbulence, opening up the possibility of using the RH approach to estimate the amplification
of this contribution to Bz.

2.4.4 Physics-based Models of ICMEs

The modeling group at PSI has developed state-of-the-art global models of CME initiation and
evolution for many years (e.g. Linker & Mikić, 1995; Linker et al., 1996, 2001; Riley et al., 2003;
Linker et al., 2003; Riley et al., 2007; Riley et al., 2008; Riley et al., 2008). However, they are
– at least at present – time consuming; both in terms of computer time and personnel. Thus,
we developed an interim solution that bridges the gap between “empirically-based” models and
these “first principles” models. The current version of this practical CME generator relies on
a modified description of the Titov-Démoulin flux rope model (TDm). The essential difference
between these types of models and either empirically-based models or statistical models is that we
anticipate deriving a greater physical understanding of the processes that give rise either to the
eruption and/or evolutionary properties of CMEs and their interplanetary counterparts. For this
specific investigation, however, this promised understanding is of value only if it allows for a better
prediction. We further anticipate that, at least initially, these types of models will not provide
forecasts that are as accurate as the simpler approaches. However, it is likely that this will change
in the foreseeable future. Moreover, by including them at the outset, we provide quantitative skill
scores that these or any comparable model must exceed to be considered better from a predictive
standpoint.

2.4.4.1 Pre-Existing Flux Rope Eruptions: The TDm model is an analytic model of a force-
free coronal flux rope embedded within the solar corona. The eruption can be initiated by either
allowing the initially out-of-equilibrium flux rope to erupt, or by first establishing an equilibrium for
the flux rope, then introducing a perturbation (such as canceling flows near the polarity inversion
line), which then produces an eruption. We believe it is possible to use available observations
to constrain the initial characteristics of the flux rope (location, orientation, axial field strength),
providing the key ingredients for a predictive type of model, in much the same way that cone-model
simulations are routinely driven by parameters derived from white-light observations (Odstrcil &
Pizzo, 2009).
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2.4.4.2 “First Principles” Models of CMEs: Our group at PSI has, and continues to inves-
tigate fundamental issues related to the initiation and evolution of CMEs in the corona and solar
wind (e.g. Mikić et al., 2013) and to improve the physics describing the origin of the slow and fast
components of the solar wind through the incorporation of waves and turbulence (Lionello et al.,
2014). These types of simulations are extremely time consuming and could not, at least currently,
be incorporated into a predictive scheme for forecasting Bz. However, we recognize that as these
models improve and more computational resources are provided for their use, it may become feasible
for them to find a place within the forecasting framework.

2.4.4.3 “Hybrid” Schemes: An intriguing idea we will pursue is to couple the predictions from
different types of statistical, empirical, and physics-based CME models. For example, one could
combine either coronagraph or HI observations with magnetic field observations of the flux rope
observed by Messenger at Mercury. Although this would only work under certain conditions and
geometries, it could provide a unique prediction of what the combined magnetic/plasma structure of
the CME was near to the Sun, but sufficiently far that it could be evolved either kinematically (e.g.
Riley & Crooker, 2004) or using a (magneto)hydrodynamic algorithm. Alternatively, one could use
the cone model, which has arguably the best capabilities of propagating the ejecta and associated
shock to 1 AU, to specify the large scale non-magnetic properties of the event at 1 AU. Into
this, the magnetic field from a force-free, TDm, or even first-principles model could be embedded;
the rationale being that the cone-model reproduces the most accurate dynamical evolution of the
ejecta, including non-linear deformations and event timings, but the magnetic model captures the
structure of the field. Finally, we can combine disparate approaches. Bieber et al. (2013), for
example, described a technique for inferring Bz from neutron monitor data, based on the idea that
cosmic rays hitting the Earth have already passed through and interacted with the IMF upstream of
the Earth. They found that the correlation between the predicted and measured Bz for 161 ICMEs
ranged from ∼ 85% to ∼ 60% for predictions 1-3 hours into the future.

2.4.5 The Ambient Solar Wind

While prediction of the ambient solar wind in the absence of any transient phenomena is likely not
a high priority from the perspective of geoeffective consequences (although all-clear forecasts are
important), the role of the quiet-time solar wind is crucial in the evolution and hence prediction
of large excursions in Bz produced by ICMEs. Fast CMEs, in particular, are more significantly
distorted and decelerated when slow and dense ambient wind lies ahead (Riley et al., 2003). More-
over, the properties of the wind into which the CME propagates will be modified by its passage:
Large-scale deflections across the CME-driven shock will alter the perpendicular components of the
IMF. Additionally, the presence of large-amplitude Alfvén waves in fast solar wind will result in the
large and temporally compressed Bz fluctuations. Thus, the prediction of the ambient solar wind
is a key component of any Bz prediction scheme.

We have developed robust and relatively accurate models of the ambient solar wind over the
last decade, making direct comparisons with observations (Riley et al., 2001, 2002, 2003; Riley,
2007b, 2010; Riley et al., 2010, 2011, 2012; Riley et al., 2012b). We have found that the modeled
results are capable of reproducing in-situ measurements with a typical correlation coefficient of 0.75
(Riley & Linker, 2014), during relatively stable conditions (declining phase and solar minimum)
and in the absence of obvious transient activity (Riley & Linker, 2014). These models, however,
are demonstrably quite sensitive to the input magnetograms (Riley, 2007a; Riley et al., 2012; Riley
et al., 2013b). To substantially improve our predictions, requires a thorough analysis of these inputs,
which should include the best reconstruction of polar fields and, optimally, incorporate temporal
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evolution. As part of other funded studies, we are investigating which approaches most accurately
reproduce in-situ measurements.

2.4.5.1 Persistence and Probabilistic Forecasts: Although our goal will be to provide real-
time, event-driven predictions, at a minimum, we can use combinations of persistence and proba-
bilistic forecasts to make crude estimates for Bz in the absence of any other reliable information.
This could form the basis for the reference model from which skill scores are computed (Owens
et al., 2013). As discussed above, persistence refers to the assumption that the Sun now is exactly
as it was one hour, say, earlier. If valid, we can use those data to predict the next one, six, or
24 hours, obviously with increasing uncertainties. Similarly, recurrence relies on predictions based
on solar conditions measured 27 days earlier. Probabilistic forecasting summarizes what is known
about likely future events by assigning a probability to a range of outcomes. This may offer some
value during intervals surrounding stream interfaces (McPherron & Siscoe, 2004). Such techniques
were employed in terrestrial meteorology prior to the development of sophisticated global circulation
models. Since it is not yet clear whether space meteorology has yet crossed the threshold whereby
models outperform these statistical approaches, it seems prudent to include them in our arsenal.

2.4.5.2 Waves and Turbulence: Our discussion so far has focused on the large-scale variations
in the IMF. However, a substantial amount of power is contained within higher frequency waves
and turbulence. From a prediction point of view, these are the most challenging to attempt to
forecast. Fortunately, from a geoeffective standpoint, their phase information is not as important
as their statistical properties (Merkin et al., 2007). Thus, we can superpose a contribution from
waves and turbulence, based on properties of the predicted large-scale field at that time which
contains contributions up to the highest frequencies, and which is statistically indistinguishable
from observations. The properties of the turbulent solar wind are well established both as a function
of solar wind (e.g., slow/fast) and phase of the solar cycle (Bruno & Carbone, 2013). This idea is
similar to the technique of “downscaling” used in terrestrial climate modeling, and which has been
successfully tested by Owens et al. (2014) in constructing appropriate inputs to drive ensemble
magnetospheric forecast models.

2.4.6 Relevant Data

Our proposed work will rely on the full range of datasets produced by NASA missions. Time
series data of the IMF field vectors will of course be indispensable, as well as speed, density, and
temperature to validate model predictions. Additionally, remote sensing white light images will drive
cone-model simulations and provide key clues about the three-dimensional structure of the ejecta,
including, possibly, the orientation of the flux-rope axis. Heliospheric Imager data from STEREO
will provide important information on the propagation and evolution of some ICMEs. EIT and X-ray
images will provide feedback on the quality of global model solutions and may provide “actionable”
information for making predictions. Sigmoid structures, dimming regions, flares, and EIT waves,
for example, can be used to provide timing information during an eruption, and may, in principle,
lead to a prediction scheme based on recognized patterns of features. Photospheric magnetic field
measurements, while providing a direct measurement of the parameter we are hoping to estimate at
1 AU, undergo significant transformation before reaching the Earth. The properties and evolution of
such measurements, however, are crucial for advancing our predictive capabilities, including better
boundary conditions for the physics-based models, but also as input into the statistical approaches,
such as feature tracking and recognition.

We will also leverage the work by the Solar Physics/Computer Science team at Montana State
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University (currently in transit to Georgia State University), who have developed a feature recog-
nition algorithm for SDO observations (Martens et al., 2012; Banda & Angryk, 2009; Banda et al.,
2013b,a; Schuh et al., 2014), incorporating it with previously revealed associations, such as the
presence of dimming regions being a threshold requirement for the production of fast (> 800 km/s)
CMEs (Reinard & Biesecker, 2009). Various combinations of different structures/phenomena can
be incorporated into the pipeline we are proposing and tested for efficacy.

2.4.7 Ensemble Modeling

A crucial advance that propelled terrestrial modelers forward was the development of ensemble
modeling techniques, some of which will be implemented in our proposed investigation. Ensemble
forecasting is defined as a method of prediction that relies on the use of a representative sample of
possible future states to derive a prediction. One of the appealing aspects of such an approach is
that it offers a rigorous method for computing confidence bounds of the solution by estimating the
uncertainty in the ensemble (Wilks, 2006). Moreover, the mean of the ensemble of forecasts is, or
should be more accurate than the forecast from any individual member; the reason being that the
random, or unpredictable regions of the forecast tend to cancel one another, while the aspects of
the forecast that the majority of the models agree on are not removed (Warner, 2010).

Ensemble modeling techniques have only recently and tentatively been applied to the helio-
physics environment (e.g. Riley et al., 2012a; Riley et al., 2013; Pizzo, 2014). However, they
have been developed, tested, and rigorously applied within the terrestrial weather community for
more than a decade, thus, providing a wealth of resources that can be adapted to space weather
phenomena (Figure 7). As an illustration, we can define the following ensemble model for Bz:

B̂z(t) =
K∑
i=1

ωiBz(t), where ωi are the model weights and
K∑
i=1

ωi = 1 (Wichard & Ogorzalek, 2004).

Intuitively, this emphasizes that those predictions that produce robust and reliable forecasts will
also be associated with large weights.

2.4.8 Metrics, Probabilities, Skill Scores, and Confidence Intervals

Model validation refers to the task of identifying the strengths and weaknesses of a model through
detailed comparisons of model output with observations. Similarly, metrics are used to measure
the long-term trends in model improvement. Whereas model validation involves a comprehensive
comparison of all available data, metrics target a small set of specific benchmarks.

Focusing initially on Bz, the forecast error is the difference between the actual measured value
of Bz (Bz,t) and the forecast (B̂z,t): Et = Bz,t − B̂z,t. From this, we can develop a number of
measures of the aggregate error, which describe the accuracy of the prediction over some interval
t = 1, N . These include the mean absolute error (MAE), mean absolute percentage error (MAPE),
mean absolute deviation (MAD), percent mean absolute deviation (PMAD), mean squared error
(MSE), and root mean squared error (RMSE). The MSE, for example, is given by:

MSE =

∑N
t=1E

2
t

N
(1)

Additionally, the forecast skill score (SS) is defined by:

SS = 1 − MSEforecast

MSEref
(2)

where MSEref is the mean square error calculated from some standard, reference model, typically
the simplest and least accurate in the suite. Thus, SS serves as a measure of how well (or poorly)
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Figure 7: (a) A subset of model realizations computed for CR 2062. (b) ‘Whisker” plot of model realizations
from (a) at 1AU: Black line is the ensemble solution; red are in-situ measurements; and boxes with “whiskers”
summarize the variability of the realizations. (c) A “Taylor diagram” for summarizing the performance of
model runs. See Taylor (2001) for further details. The blue squares mark the new locations of the solutions
when the base temperature is raised from 1.8 × 106K to 2.5 × 106K. Adapted from Riley et al. (2013).

model refinements perform.
We will initially define a number of metrics to track our progress. These will not be limited to

just predicting Bz, but also related quantities that are relevant. For example, we will employ both
MSE estimates, as well as event-based tests, such as the arrival time of sector boundary crossings,
and CME-driven shocks. From these analyses, it is straightforward to define “skill scores,” which
track the improvements in the model over time.

Confidence intervals (CIs) are used to indicate the reliability of an estimate. They are a measure
of our confidence with a particular prediction, or alternatively the likely uncertainty, typically
given at the 95% level. Thus, in addition to estimating retrospectively how well our predictions
performed, we will also provide prospective confidence intervals for all predictions made. CIs can
be constructed in a number of ways. We could, for example, combine the output from different
models (both statistical and mathematical) to derive an estimate of the CI. Not surprisingly, the
confidence in a predicted time series of Bz would decline as the prediction stretched farther into the
future. Importantly, they would provide a direct and quantitative indication of the quality of the
prediction to the user.

Thus far, we have assumed a goal of predicting Bz as a function of time. It is likely, however, that
at least for some users, a forecast probability would be more appropriate. For event predictions,
such as the time of arrival of a shock, a high-speed stream, or a sector boundary crossing, this
can be phrased simply by the probability that the event will, or will not occur within the next 24
hours, say. We might generalize this concept for Bz by estimating the probability that Bz exceeds
some negative threshold, say, −20nT for some period of time, say, six hours, again within the next
24 hours, say. These values would be situation-dependent: Different customers would likely have
different requirements for the forecast probability to be useful to them. ‘All clear’ forecasts based
on the absence of such events would also likely have value to a wide range of users.
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2.5 Proposed Contributions to the Focus Team Effort

NASA’s Living With a Star program (LWS) seeks to “improve our understanding of how and why
the Sun varies, how the Earth and solar system respond, and how the variability and response
affects humanity in space and on Earth.” More generally, NASA’s Heliophysics Research Program
aims to “Understand the fundamental physical processes of the space environment from the Sun to
Earth,...” and to “enabl[e] the capability to predict the extreme and dynamic conditions in Space.”
Our objectives directly address these goals by investigating the properties of CMEs, whose impact
with the Earth’s magnetosphere can cause a range of adverse effects, and providing the most robust
and accurate forecasts of Bz. Dr. Macneice at NASA’s CCMC has expressed a keen interest in
the objectives and deliverables proposed here, and our team includes three members of NOAA’s
SWPC.

2.5.1 Relevance to the scientific objectives of the Focused Topic

Our proposed investigation directly addresses all objectives of the focused topic. Specifically, we
will provide a continuous estimate of Bz (as well as Bx, By, bulk solar wind speed, density, and
temperature) primarily in the vicinity of Earth, but also at other strategically important locations,
such as at Mercury and, in principle, along the orbits of Solar Orbiter, Solar Probe Plus, Sunjammer,
and even upstream of Jupiter in support of the Juno mission.

2.5.2 Contributions to the Focused Science Team’s effort

The team we have assembled combines all the skills necessary to meet the objectives of this FST.
We are observers, modelers, theorists, and operators. We have expertise in the analysis of remote
solar observations (white-light and HI, EUV, X-ray, and photospheric magnetic field observations)
and in-situ measurements. We represent the key developers of relevant models from simple ad hoc
techniques to state-of-the-art global, time-dependent MHD simulations. We are a cross-disciplinary
team, including experts from the fields of computer science, magnetospheric physics, solar, and
heliospheric physics.

2.5.3 Metrics and milestones for determining success of proposed research

Our goal is to produce a framework that is available to the scientific community by the end of the
project. In Section 2.6 we summarize the main milestones we will achieve. Our metrics for success
will literally be the metrics defined to quantitatively assess our ability to predict Bz. We believe
that to claim to be able to make an accurate real-time, continuous prediction of Bz on the timescale
of four years is probably unrealistic. We do, however, believe that we can objectively quantify our
initial abilities and track the progress during the course of the investigation. Based on the further
development of the promising ideas presented here, we are confident that our forecasting abilities
will improve substantially during the project.

2.6 Outline of the General Plan of Work

This proposal is for four years. Our principal goals are to: (1) define a set of robust metrics for
quantitatively, reliably, and efficiently assessing a range of prediction techniques for estimating IMF
Bz at 1 AU up to 24 hours in advance; and (2) develop techniques for predicting Bz – both in the
short and long term – that have the most likelihood of success.

• First Year
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– Develop a Bz Forecasting Framework (BFF) that can be downloaded and installed by
all team members. We will use a combination of shell scripts, Fortran, C/++, and
R/Python served from an Subversion (SVN) repository, providing a platform-agnostic
toolkit;

– Populate the BFF with a limited subset of the predictive algorithms outlined above.
These will be prioritized based on several factors, including likelihood of success and
ease of implementation;

– Assemble the necessary datasets as well as any relevant meta-datasets for driving, testing,
and validating the BFF. Some will be stored directly in the SVN repository while others
will be either disseminated from PSI or from their original source location;

– Complete initial set of validation studies, computing relevant metrics and skill scores.
Focus initially on predicting ambient solar wind and simple CME events;

– Identify data sources and generate Benchmark Data Sets that can be used for creation
and evaluation of our future models.

• Second Year
– Incorporate more models into the BFF;
– Incorporate dynamic time warping into time series pattern recognition technique;
– Compare various physics-based model predictions for a set of ICMEs that cover the range

of observed events;
– Write set of papers documenting the BFF as well as the initial results from its application

and present results at scientific meetings.
• Third Year

– Develop a statistical model (e.g.,ANN) that incorporates automatically recognized solar
features (dimmings, sigmoids, flares, etc);

– Initiate contact with NASA (CCMC) and NOAA (SWPC) and discuss possible avenues
for delivering and/or operationalizing the BFF;

– Perform parametric studies of all models and combinations thereof to optimize the pre-
dictive capability of the BFF;

– Revise and refine validation studies, computing a comprehensive set of skill scores and
model uncertainties for all model combinations. Publish results in peer-reviewed journal
and present current status at selection of meetings and/or workshops.

• Fourth Year
– Investigate efficacy of running first principle models for specific events as a predictive

model;
– Complete development of BFF, including full documentation, and make available to

scientific community;
– Deliver the BFF to NASA/CCMC and/or NOAA/SWPC;
– Write final set of peer-reviewed manuscripts comprehensively describing the BFF and the

various modules developed for it. Attend a selection of scientific meetings to promote
the use and availability of the BFF.

Although our proposed work appears ambitious, it is necessary if we are to make meaningful
advances in our ability to predict Bz. Our team has developed, or is developing most of the models
we are proposing to test in this effort. Thus, the emphasis is more on development of the framework
to quantitatively test them as well as the insight on how best to combine them to improve our
predictive capabilities.
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2.7 Management Plan

The investigation outlined here requires a well-directed and coordinated management plan. In
addition to the intrinsic value brought by individual team members, we believe that a key factor in
our success lies in the members’ abilities to think outside of their specific areas of expertise. It is
crucial that we meet on a regular basis to develop and test new ideas and report back on progress
made. We propose to hold biweekly web based meetings (using Citrix’s GoToMeeting) as well as
two in-person meetings per year, one in Southern California and the other in Boulder, Colorado or
Atlanta, Georgia. We believe that through these largely conceptualizing interactions, our team of
experts will be able to formulate novel and related ideas that can then be tested within the BFF.
Each team member is fully aware and has agreed to the specific and focused goal of the proposed
work and will devote their resources as necessary to achieving them.

Pete Riley (PI) will manage, and be responsible for the completion of the proposed research. He
will work with Co-I’s Roberto Lionello, Piet Martens, Rafal Angryk, Chris Russell, Roger Ulrich,
Vic Pizzo, Curt de Koning, Alysha Reinard, Todd Hoeksema, and Yang Liu, and collaborators Jon
Linker, Tim Horbury and Matt Owens, to undertake the tasks outlined here. Dr. Lionello, together
with Dr. Riley and a junior scientist, will be primarily responsible for any necessary developments
of PSI’s numerical codes, including the cone-model, TDm, and first-principles approaches. Dr.
Martens will provide expertise in the interpretation of the solar signatures of transient activity. He
also directs a complementary SDO data mining and pattern recognition program, the results of
which will be of considerable value to our proposed work. Dr. Angryk is a computer scientist with
significant experience in pattern recognition, data mining, and general machine learning techniques.
He will direct a full-time graduate student in developing and testing the statistical modeling portion
of our investigation. Drs. Martens and Angryk have a decade-long collaboration record on data-
driven analyses of solar activity (SOHO, TRACE, and SDO) and the creation of statistical models.
Dr. Russell will provide expertise in the interpretation of in situ measurements. He will guide a post-
doc in implementing some of the modeling and data-fitting techniques outlined here, particularly,
involving (non) force-free fits to MCs. Dr. Ulrich will provide expertise in the interpretation of
photospheric magnetic fields and direct a post-doc on various aspects of the proposed work, who will
develop time-dependent, differentially rotated maps for improving our ambient solar wind solutions
use the maps to generate PFSS and MHD solutions. Dr. Pizzo will provide his modeling expertise
(MHD models and 3-D reconstructions of CMEs observed by STEREO) at no cost as well as the
interpretation of global remote solar observations and in situ measurements. Dr. de Koning will
run NOAA’s CME Analysis Tool (CAT). He will also assist in the development and incorporation
of techniques into the BFF. Dr. Reinhard will assist in the assembly of the relevant datasets for
assessing the various prediction tools under development. She will also use the tools developed
and compute the relevant metrics from which skill scores can be computed. Drs. Hoeksema and
Liu will contribute special data products from HMI and MDI, including daily-update synchronic
maps and vector magnetic field data for synoptic and region-specific computations, as well as time-
evolved synchronic maps of the global magnetic field using both line-of-sight and vector magnetic
data. Dr. Jon Linker, will provide input at no cost through a complementary project supported
through AFOSR, which shares several objectives with the proposed investigation. This project will
be carried out in collaboration with Drs. Horbury and Owens at Imperial College and the University
of Reading, respectively, who will provide expertise and insight during the planning stages of the
investigation as well as interpretation of the results. This will complement projects they are currently
managing at their institutions. Finally, at PSI we currently support undergraduate interns on a
variety of computer- and science-related projects, and we will include them in portions of this
investigation, as appropriate.
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Riley, P., Lionello, R., Mikić, Z., Linker, J., Clark, E., Lin, J., & Ko, Y.-K. 2007, Astrophys. J.,
655, 591

Riley, P., Luhmann, J., Opitz, A., Linker, J. A., & Mikic, Z. 2010, J. Geophys. Res. (Space Physics),
115, 11104

Riley, P., & Luhmann, J. G. 2012, Solar Phys., 277, 355

Riley, P., & McComas, D. J. 2009, J. Geophys. Res., 114, 9102
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A Facilities and Equipment

At Predictive Science Incorporated (PSI), San Diego, California, we maintain a set of Macintosh
workstations that are more than adequate for meeting the data-processing, storage, and analysis
requirements of the proposed investigation. Any necessary large-scale computations of CME initia-
tion and evolution will be performed on massively parallel computers at NASA (Pleiades) and NSF
(Stampede) through other contracts, for which we currently maintain, and envisage receiving further
allocations sufficient to perform the proposed work. We maintain a Subversion (SVN) repository
for all of team-oriented code development projects (e.g., CORHEL) and will develop a complete
SVN package to serve the algorithms and data for the proposed work. This will be used by all team
members and, in due course, opened up to the scientific community. We will develop and continue
to update a team web page for this investigation, communicating our results and providing access
to project-developed packages. Finally, we continue to maintain a set of modeling web pages (e.g.,
www.predsci.com/hmi/home.php), which will incorporate elements of the proposed investigation.
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