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1 Proposal Summary

Objectives: The primary objective of the proposed work is to derive the most robust
and accurate prediction of the interplanetary magnetic field, nominally at least 24 hours in
advance. Additionally, our approach will also provide estimates of solar wind speed, density,
and temperature.
Methodology: Our approach is unique in that it focuses not primarily on understanding
the physical processes that modulate the interplanetary magnetic field (although we antici-
pate that this will occur as an inevitable byproduct of the work), but with the single-minded
objective of providing the most robust estimation of the interplanetary magnetic field, pri-
marily at 1 AU. To achieve this, we will assemble all possibly viable techniques for predicting
the interplanetary magnetic field, applying rigorous statistical methodologies to discriminate
between, and combine them as appropriate. These include, but are not necessarily limited
to: persistence (which provides the base prediction that any approach must exceed); his-
torical pattern matching (using k-nearest neighbor, Euclidean distance, and dynamic time
warping); neural networks; empirically based CME models (e.g., spheromak-cone model);
and first-principle, physics-based models. A priori, we do not know which technique(s) will
be superior; notably, though, we will pursue those that add the most value to the prediction,
which may lead us in directions that we had not fully anticipated. Additionally, we will
employ several data mining techniques (e.g., classification, clustering, support vector ma-
chines) to better understand the data-stream. Our team was carefully chosen to encapsulate
the wide range of data collection, analysis, and both statistical and physics-based modeling
expertise necessary to achieve our goals. Additionally, our team includes members from
the the operations arena. We will also derive metrics for each of the in-situ measurements
being predicted. We will quantify when, where, and to what extent they agree with the
observations. Moreover, we will provide robust statistical measures of the uncertainty in the
prediction. By so doing, we will provide necessary targets that other contemporaneous, or
subsequent investigations must improve upon.
Proposed Contributions to the Focus Team Effort: Our proposed effort seeks to ad-
dress all goals of this Focused Science Topic. Specifically, we will be able to provide estimates
of the three components of the interplanetary magnetic field at least 24 hours in advance
(and over longer periods up to 4-5 days within commensurately larger uncertainties). Addi-
tionally, the approach will allow us to provide predictions at other locations such as Mercury
(Messenger) and Jupiter (Juno) and elsewhere (Solar Orbiter, Solar Probe+). Finally, our
methodology lends itself to prediction of the remaining plasma parameters, including solar
wind speed, density, and temperature.
Team Members: Pete Riley, Roberto Lionello, Jon A. Linker (PI, Co-I, and collaborator,
respectively, PSI), Piet Martens and Rafal Angryk (Co-Is, Georgia State University), Chris
Russell and Roger Ulrich (Co-Is, UCLA), Vic Pizzo, Curt de Koning, Alysha Reinard (Co-
Is, NOAA), Todd Hoeksema and Yang Liu (Co-Is, Stanford), Tim Horbury (Collaborator,
Imperial College, London), and Matt Owens (Collaborator, University of Reading).
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2 Science, Technical Aspects, and Management

2.1 Scientific Background

2.1.1 Introduction

In this proposal, we outline a program to derive the most robust and accurate prediction of
IMF Bz with up to 24 hours advance warning. In essence, we aim to build up a prediction of
IMF Bz by combining several distinct elements that arise on different temporal and spatial
scales: slowly-evolving stream structure; rapidly-changing large scale perturbations from
ICMEs; and high-frequency fluctuations from waves and turbulence. To quantify our success,
we will develop a set of metrics that will reliably track our progress during the course of the
investigation. In this section, we review what is currently known about IMF Bz, what work
has already been done to attempt to predict, and what lessons can be learned from the
previous LWS Focused Science Topic (FST) addressing the same issue.

Conceptually, it is illuminating to consider the various processes that contribute to a non-
zero z-component of the IMF. The large-scale quiescent heliospheric magnetic field has no
net Bz. There is a semiannual variation in geomagnetic activity (the “Russell-McPherron”
effect (Russell & McPherron, 1973)) that derives not from the true Bz component, but the
projection of the IMF into the geomagnetic coordinate system. Waves and turbulence can be
superposed on top of this large-scale picture (e.g., Horbury & Balogh (2001)), but in, and of
themselves, they do not actively drive space weather. From a geo-effective viewpoint, large
solar eruptions generating coherent flux rope structures that propagate relatively undisturbed
to 1 AU represent the major source, particularly if the axis of the flux rope lies in, or near to,
the ecliptic plane. In addition, however, fast CMEs drive fast-mode shocks ahead of them
that compress the IMF, amplifying the wave/turbulent fluctuations. Additionally, draping
of the large-scale field around the ejecta can result in large, sustained values of Bz (Gosling
& McComas, 1987).

Predicting the consequences of interplanetary conditions on geomagnetic activity (at
least as defined by such indices as Dst and Kp) has generally been easier than predicting
interplanetary conditions. Burton et al. (1975) developed an empirical relationship between
velocity, density, and the southward component of the IMF upstream of Earth and Dst.
Later, feed-forward neural network algorithms with one hidden layer and back-propagation
learning were developed to predict Dst one hour in advance (Lundstedt, 1996).

Predicting IMF Bz with any reliability, during disturbed time periods is a challenging
and under-appreciated goal. It is important to distinguish between studies that aim to
understand the magnetic-field properties of particular events retrospectively from those that
attempt to predict them in advance. Consider, for example, the comparison of a global MHD
simulation with observations shown in Figure 1. This could be interpreted as a validation
that global MHD models are capable of reproducing the essential features of ICMEs. If
so, it might further be inferred that such models should be a useful predictive tool. While
we do not dispute that this will ultimately transpire, we caution that such comparisons
necessarily amplify the positive aspects of the comparison and, indadvertedly, convey the
idea that the model is more accurate and robust than it is in reality. To emphasize this
point, consider that this event was chosen because: (1) it was extremely simple; and (2)
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Figure 1: Comparison of observed plasma and magnetic field parameters (left) with simulated
parameters (right) for an ICME observed by the ACE at 1 AU and in the ecliptic plane, and 13
days later by the Ulysses spacecraft at 5 AU and 22 degS heliographic latitude. Adapted from Riley
et al. (2003).

it matched the model results. The serendipity of identifying such a simple event that was
observed by two heliospherically-separated in-situ spacecraft for which one of our limited
number of simulations matched well cannot be overstated. In contrast, if we are seeking to
predict an event, we do not have the luxury of hindsight to choose the model result that
most matches the observations.

Currently, although a number of ideas and models have been proposed, there are no
reliable predictions for IMF Bz. Perhaps the most defensible model at present is that of
“persistence,” that is, the value of Bz in the next hour, day, or even week is its current
value. On average (> 1hr, say) this value will be zero. During the passage of large, coherent
magnetic clouds, on the other hand, it may have a sustained value that is substantially
different from zero. It is not clear (to us, at least) which of the large number of possible
ideas that could be applied to address this problem are most likely to be successful. As
discussed below, various combinations of both statistical and physics-based models should
be considered. Statistical techniques have met with only limited success within heliophysics,
primarily, we believe, because they de-emphasize the physical underpinnings of the processes
under study. Physics-based approaches range from purely empirical models, through semi-
empirical, to “first principles” models. We anticipate that, at least initially, the simplest
models will prevail over more complex formalisms, but, just as was the case in terrestrial
weather forecasting, numerical models will eventually supersede them.

Figure 2 summarizes the essential components of our proposed effort. Each of these
modules will be described in more detail in the sections that follow. Here, we remark
on several points that we believe will ensure the success of our investigation. First, the
overall framework is the most important aspect, not any specific model. Our team will
develop a toolkit that can be accessed and used by all team members initially, and the
community-at-large later, allowing them to objectively test various prediction approaches.
Second, our approach is comprehensive. We cannot predict which approach will provide
the optimum prediction. Indeed it is likely to be a combination of approaches which, when
appropriately combined, lead to the best forecasts. Moreover, different techniques will likely
mature and/or supersede others either during the lifetime of this study or later. Third, some
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Figure 2: Main elements of our proposed work flow. Extensive use will be made of both remote
solar observations and in situ measurements (green), a range of physics-based and statistical models
(brown), use of model output (red) for validation and prediction (blue). See text for more details.

of the techniques we will consider offer little in the way of physical understanding of the
processes driving variations in Bz. However, practically speaking, they may provide the best
near-term forecasts. Fourth, the package we propose to develop will be based on standard,
open source programming practices. This will allow a greater number of contributors to it
and extend its life beyond the confines of a four-year program.

Previous studies that have assessed our ability to predict the bulk solar wind speed, an
undoubtedly easier quantity to forecast have revealed that models can only modestly better
“persistence.” Persistence refers to the concept that a good estimate of what the solar wind
will be doing in the next hour, day, or even week, can be found by looking at what it is doing
now. Norquist & Meeks (2010) also demonstrated that, at least until recently, persistence
remains the best technique for near-term forecasts. The persistence method is still applied
by terrestrial weather forecasters, particularly in locations such as southern California, where
conditions vary little from one day to the next. Additionally, we can define “recurrence”
as a prediction based on observed values 27 days ago. However, such predictions are likely
to be valid only under “all quiet” or “all clear” conditions. In an updated study of several
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numerical models, Norquist (2013) showed that recurrence had more skill than the models
for three out of five years studied. Moreover, they make the most sense for parameters
that have systematic variations even during quiescent conditions, such as speed, density, and
temperature. Even the radial and azimuthal components of the IMF would be amenable
to prediction using recurrence. However, during such times, although Bz will fluctuate
rapidly due to both waves and turbulence – both of which are well-characterized, at least
in a statistical sense, on average it would be predicted to remain zero. The periods of most
interest, when Bz deviates from zero for substantial periods of time, occur during the passage
of a coronal mass ejection (CME) and the sheath region that precedes a fast, and usually
more geo-effective event. Although there is occasionally a recurrent aspect to such transient
phenomena (such as when the same long-lived active region launches a sequence of ejecta),
in general these are sporadic events.

The difficultly in predicting Bz at 1 AU during periods that are likely to be geo-effective
cannot be over-emphasized. Currently, our best “nowcast” or near-term forecast of Bz, at
least within the next 3-6 hours, is probably simple persistence. This is suggests that two
quite diverse avenues can be pursued for improving on this. First, using a combination of
observations and models to propagate what we see at the Sun to the vicinity of the Earth.
We will outline a broad array of observational signatures and broad spectrum of models that
can help us accomplish this. Second, extrapolating what we see in the vicinity of the Earth
back toward the Sun to predict how Bz will change over the next 12-24 hours. The former
approach will lead to predictions that can be made days in advance of the observations
but, as we will discuss, is fraught with uncertainty. The second approach, will limited to
near-term predictions will likely provide more accurate forecasts; at least for the duration
of this proposed effort. However, neither is obviously better than than other. Our proposed
investigation will create the necessary infrastructure to develop both paths, quantitatively
estimating their accuracy and providing key confidence intervals. Additionally, by employing
simple ensemble techniques, we can combine the various approaches yielding an optimized
forecasting scheme that can incorporate new and novel approaches as they are uncovered.

It is worth noting that a cost benefit analysis suggests that the prediction of intervals of
Bz with the highest likelihood of geomagnetic consequences should have the highest priority.
Had the July 23, 2012 event observed in situ by the STEREO A spacecraft instead inter-
cepted Earth, the massive field strengths (in excess of 100 nT), a good proportion of which
was southward, would have produced unprecedented consequences to Earth’s technological
systems (?Baker et al., 2013; Riley et al., 2013).

The concepts and models that we propose to assess in this effort may at first seem overly-
ambitious. However, our diverse team has expertise that overlaps with every technique we
will implement. Moreover, our approach is one of utmost pragmatism. Ideas that work
will continue to be pursued, but ideas that fail will be discounted (not necessarily discarded
though). We believe it is important, however, to begin our effort with the most thorough and
comprehensive mindset. Many ideas that have previously been explored have been through
eyes of optimism. Techniques are developed and presented in the light most favorable to that
technique. Rarely does a peer-reviewed study propose a novel technique only to dismiss it in
the Discussion in favor of a competitor’s approach. By developing a common framework for
testing all ideas, our investigation can objectively and quantitatively assess them. Although
team members are contributing their own models for assessment, the team as a whole will
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evaluate and guide the evolution of the effort over the four-year program.
Our investigation will also provide insight into the types of missions NASA might consider

if the prediction of Bz warrants sufficient priority. For example, a spacecraft located at the
L4 Lagrangian point could provide important Heliospheric Imaging data, together with key
observations of the photospheric magnetic field that will, in ∼ 7 days lie directly under the
sub-solar point. On the other hand, that same spacecraft located at L1 might provide more
relevant data on energetic particles accelerated by the CME-driven shock. Alternatively,
perhaps a combined mission with limited and distinct instrumentation on each spacecraft
would provide the optimum set of data.

2.1.2 Lessons Learned from the Previous FST

In 2007, the LWS program awarded grants to five groups (Vourlidas, Yurchyshyn, Lugaz,
Jahn, and Bieber) to assemble a TR&T Focus Team on “Prediction of the Interplanetary
Magnetic Field Vector Bz at L1.” Although worthwhile studies were undoubtedly performed
by each group, there are several reasons that the FST was not as successful as it could
have been (Vourlidas, Personal Communication, 2014). First, the team members did not
work well together. To a large degree, they did not “buy in” to the topic’s goal. Second,
the proposals were on very disparate topics, including muon measurements and global CME
modeling. Our proposed effort resolves, or at least mitigates these issues. By pre-defining
the team, we have identified the key people and their roles in achieving the single objective
of the proposed work. We have “buy in” from the members because all agreed to participate
as necessary to support the project’s goal. Moreover, various subsets of the proposed team
have worked successfully within other teams over many years.

Since the previous FST on this topic, seven years have elapsed. During this time, nu-
merical models have improved, both remote and in situ observations have expanded, and
our understanding of both the eruption process and evolution of CMEs through the solar
wind is arguably better. In spite of a series of papers documenting these advances, it is not
clear that any of them have improved our predictive capabilities. Reproducing the essen-
tial features of a particular set of observations is a distinct and considerably more tractable
goal than predicting those same observations in advance. Moreover, whereas such studies
necessarily emphasize the positive aspects of model/data comparisons (because little insight
would be gained from poor comparisons), predictive studies should be more objective. In
fact, such investigations will be encouraged to quantify the poor predictability of models in
the early phases of the work, otherwise they will be unable to demonstrate improvement.
By purposefully not advocating a particular approach to improving our prediction of Bz, we
believe we can be more objective, and, additionally, identify and pursue those methodologies
that are most promising. Moreover, we can provide a framework for other researchers in the
field to test their techniques, subjecting them to the same metrics as are imposed on us.

2.2 Scientific Objectives

The primary scientific objective of this investigation is to apply a comprehensive suite of
prediction algorithms, including new ones developed during the course of the investigation,
to provide the most reliable and robust prediction of IMF Bz. Additionally, we will also
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compute the other magnetic field components (Bx and By) as well as the bulk solar wind
speed, density, and plasma temperature. To accomplish this goal requires that we:

1. Develop an easy-to-use framework for testing Bz prediction algorithms;

2. Develop a rigorous set of metrics and skill scores that include estimates of uncertainty;

3. Test currently most promising statistical and numerical modeling techniques;

4. Develop a prioritized set of new predictive techniques;

5. Provide the completed framework as an open source resource to the scientific commu-
nity.

2.3 Perceived Impact of the Proposed Work

The proposed data analysis and modeling techniques, together with the application of metrics
and skill scores represent a comprehensive and unique approach to solving a specific applied
problem. If successful, our work will substantially advance our ability to forecast potentially
geo-effective conditions with 24 (and up to 4 days) advance notice. At the very least, we
will be able to accurately quantify the current state of predictive capabilities, discriminate
between approaches that are likely to be successful from those that are not, and provide a
framework that future investigations can incorporate.

Although not objectives of the proposed effort, our work will naturally address a number
of important questions. For example, where should spacecraft be positioned, and what
quantities should they measure, to give us the optimum data to ‘assimilate’ into the model?
Sensitivity studies exploring such options can be used to constrain the optimum vantage
points.

2.4 Technical Approach and Methodology

2.4.1 Introduction

In this investigation, we propose to apply a range of statistical and physics-based modeling
techniques to uncover the optimum combination of approaches that can provide the most
accurate prediction of Bz. Our approach is unique, we believe, in that from the outset, our
goals are defined not by the approaches that we propose to implement, but by the single
objective we seek: The best prediction of Bz at 1 AU. Because of this, we envisage that
some approaches will wain in importance during the course of the project, while others will
prosper. Nevertheless, in the sections that follow, we briefly describe what we believe are the
most promising initial avenues that we will pursue. Additionally, a crucial component of the
proposed work will be the development of a comprehensive set of metrics for assessing the
predictive capabilities, including the ongoing calculation of skill scores. Finally, to maximize
the value of the proposed work, and leave a working legacy, all development will – from the
outset – be undertaken within a publicly available SVN repository, allowing other researchers
access to, and the ability to contribute to the tools developed.
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Figure 3: (a) Illustration of three-layer neural network. (b) Example of pattern matching through
in-situ measurements, predicting Bz for next 24 hours. The top panel shows Bn, with the data used
for the prediction highlighted in red. The middle panel shows the Euclidean distance for the pattern
shown in the left-hand side of the bottom panel. The right-hand-side of the bottom panel shows
the top-20 patterns based on the Euclidean distance, together with the actual data (black) and the
ensemble average prediction (red), based on these realizations. The correlation coefficient between
the predicted time series and the actual time series was ∼ 0.8.

2.4.2 Statistical Models for Predicting Bz

Over the last decade or so, data mining and knowledge discovery approaches to revealing
and predicting a range of phenomena within datasets have blossomed. Moreover, a vari-
ety of publicly available and scientifically vetted toolkits have been developed for applying
these techniques. These machine learning approaches have not been widely embraced in the
solar/heliophysics community. In part, this may have been due to their limited ability to
make accurate predictions as well as the hurdle of understanding new concepts. However, a
more likely explanation is that, for the most part, such techniques do not directly address
the question of why a particular relationship exists. In fact, the second layer in a typical
neural network is known as the “hidden” layer. For our purposes, however, this understand-
ing of the physical processes is of secondary importance to prediction. Additionally, recent
advances and refinements, as well as the incorporation of these routines into a wide variety
of scientific analysis packages (e.g., RWeka in R and mlpy in Python) allows them to be
applied relatively easily.
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2.4.2.1 Neural Networks: Neural networks (NNs) are models inspired by neurons in
the brain. A typical artificial NN consists of three layers: an input layer, a “hidden” layer,
and an output layer. Figure 3 illustrates the connectivity of nodes (i.e., “neurons”) be-
tween these layers. Modernly, the biological connection has been discarded in factor of more
statistically rigorous techniques, including signal processing. Intuitively, NNs (particularly
the multi-layer feed-forward techniques) can be thought of as a nonlinear generalization of
a linear filter. In fact, this picture is illustrated within the field of Space Weather, where
NNs have found modest success in the prediction of geomagnetic indices based on solar wind
parameters (Lundstedt, 1996). Of more relevance, Wintoft & Lundstedt (1999) attempted
to predict the daily solar wind speed at 1 AU using a neutral network based on flux tube
expansion factor (computed from a potential field source surface (PFSS) model). They were
able to obtain correlation coefficients as high as 0.57 for monthly averages, which dropped
to 0.38 for daily averages. These disappointing results are likely more due to the inputs than
the technique, as Riley & Luhmann (2012); Riley et al. (????) have shown that expansion
factor alone is a relatively poor predictor of solar wind speed, the distance from the coronal
hole boundary providing much higher correlations (∼ 0.75).

Liu et al. (2011) applied a particular type of NN technique, known as support vector
regression (SVR) to forecast solar wind velocity. They were able to predict speeds with an
accuracy of over 90%, however, this was limited to a 3-hour prediction, and did not perform
well during CME intervals. The authors suggested that the inclusion of expansion factor,
fs, would include the prediction of the velocity pattern. We suggest that while this may
modestly improve prediction, there are other solar-related parameters, such as the distance
from the coronal hole boundary (DCHB), which have been shown to produce measurably
better correlations with in-situ measurements (Riley & Luhmann, 2012; Riley et al., ????).

Qahwaji et al. (2008) applied NN (the Cascade Correlation Neural Network algorithm) as
well as Support Vector Machines (SVM) techniques to predict CMEs based on the properties
of flares (intensity, duration, duration of decline/growth). While promising, the approach
suffers from several issues: False positives; use of only M/X-class flares; and the neglect of
erupting filaments/prominences. More fundamentally, for our purposes, it is not obvious
how this connection between flares and CMEs can improve our ability to predict Bz. On the
other hand, within the framework of an ensemble approach, it straightforward to include the
prediction as an input, allowing a statistical model to tune the weights.

In recent years, NNs have been significantly refined and applied to a number of fields,
being adopted into the field of “Machine Learning.” They remain, however, simple to im-
plement and the algorithms lend themselves easily to being parallelized. Although they
have been criticized for obfuscating the underlying physics (although see Fu (2003) for a
different perspective), since the primary goal of our proposed work is prediction, and not
understanding, this limitation should not penalize the approach.

2.4.2.2 Pattern Matching Approaches: A precursor to the pattern matching ap-
proaches that we plan to incorporate into analysis was developed by Chen et al. (1996).
Their insight relied on identification of well-defined and coherent magnetic cloud structures.
They suggested, and presented examples whereby certain classes of long-duration events
could be identified at 1 AU by in-situ spacecraft relatively early through the rotation of the
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large-scale magnetic field and the trailing portion (up to 80%) could be predicted by extrap-
olating a sinusoidal pattern forward in time. Particularly for flux ropes whose axes is located
in the ecliptic plane and points along the azimuth direction, the variation in Bz approximates
a ±sine function. If the helicity of the event is such that a northward excursion of Bz occurs
first, a reliable prediction of both the timing and magnitude of the all-important southward
excursion can be made. Although this may appear to limit the applicability of this technique
to a certain class of events, it is precisely this signature that results in the largest geomag-
netic consequences. We outline several refinements to this basic idea, including flux-rope fits
to real-time data and machine learning concepts, such as pattern recognition in the proposed
work. A third novel idea is to combine cone-model simulations that predict the dynamic
evolution of the ejecta in which the flux rope is embedded with the simple force-free flux
rope extrapolation (e.g., Russell et al. (1990)); the deformation of the plasma being used to
non-linearly stretch the force-free flux rope predicted from the small section of observed time
series. Not only will these approaches provide more robust predictions, they will provide key
estimates of the uncertainty in the prediction, which was not addressed in the pioneering
study by Chen et al. (1996).

Our illustration here has been limited to a simple one-to-one mapping of the profiles.
Given the variability in scale size of transient phenomena, we anticipate incorporating dy-
namic time warping (DTW) to uncover similarities in time series where the structures are
either moving at different speeds or have expanded in a non-linear way. The two time series
are ’warped’ non-linearly along the time axis. Packages exist in R for applying DTW to
time series. This approach has been successfully applied to a wide range of topics, including
speech recognition, climatology, and aviation (Rakthanmanon et al., 2013).

Figure 3(b) illustrates how simple pattern matching techniques can be employed to pre-
dict, at least near term the evolution of Bz, particularly when there are coherent variations,
such as during the passage of a magnetic cloud. The prediction was made by taking the
previous 24 hours of Bz data from a point shortly after a large ICME was detected by Wind
and sliding this swath of data along the entire time series, computing the Euclidean distance
(essentially an estimate of χ2) between it and the full dataset. We then chose the best 20
matches and used the data during the following 24 hours as a prediction for the current
time. These are shown by the grey traces. The ensemble average of these traces is shown
in red and compared with the actual data (thick black line). The correlation was ∼ 0.8.
No attempt was made to “tune” or tweak this comparison. We believe it demonstrates that
these techniques, and important refinements to them may be a useful addition to our pre-
diction tool chest. One noteworthy improvement involves the implementation of a dynamic
time warping algorithm (Figure 3 (c)). CMEs in the solar wind, whether or not they are
formally “self similar” occur on a range of spatial (and hence temporal) scales from a few
hours (Moldwin et al., 2000) to several days. Yet the magnetic structure contained within
them is often similar, being some approximation to a force-free flux rope. The speed at which
the ICME travels through the ambient solar wind, as well as the structure of the ambient
solar wind further modulates these features.
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2.4.3 Empirically-based Models of ICMEs

The distinction between “empirical” and “physics-based” models for ICMEs and/or their
associated shocks is somewhat subjective and arbitrary. However, tracking features through
various remote solar and in-situ measurements surely qualifies as an empirical model. De-
Forest et al. (2013) outlined a comprehensive analysis of the December 12, 2008 CME from
its origin in the low corona through its interception with near-Earth spacecraft. While the
study identified the origin of various features of the ICME, from it predictive standpoint,
it also illustrated the unique capabilities of heliographic imagers to provide real-time global
information on the structure as it propagates from the Sun to 1 AU. With a goal of provid-
ing 24-hour predictions, these observations can provide either direct information that can
be incorporated into a prediction of plasma conditions that will occur at 1 AU, or, as con-
straints to global MHD models, which themselves may contain the important magnetic field
information. At the least, such observations can provide key timing information for both the
CME-driven shock, the following sheath region, and the flux rope/ejecta itself.

Several techniques have been developed to compute the arrival time of IP shocks. The
Shock Time Of Arrival (STOA) model (Dryer & Smart, 1984), for example, rely on the time,
location, drift speed, and duration of radio burst measurements. Kadinsky-Cade et al. (1998)
used IMP-8 and Wind data to evaluate this model during the interval 1991-1997 and found
that the average deviation between the predicted and actual arrival of the shock was ±36
hours. Riley & McComas (2009) developed a set of fluid conservations to infer near-Sun
properties of CMEs from their in-situ measurements. The technique was validated using
numerical model results and a case study (November 22, 2001 CME) and can be used to
estimate the transit time for ICMEs. Other approaches relying on white-light observations
and effective acceleration profiles (Gopalswamy et al., 2001) and low-frequency radio mea-
surements (Reiner et al., 2007) have also been proposed. gop (????) estimated typical errors
of ∼ 10.7 hours in the predicted arrival time of the shock.

Bieber et al. (2013) presented a technique for inferring Bz from neutron monitor data,
based on the idea that cosmic rays hitting the Earth have already passed through and
interacted with the IMF upstream of the Earth. They found that the correlation between
the predicted and measured Bz for 161 ICMEs ranged from ∼ 85% to ∼ 60% for predictions
1-3 hours into the future.

Numerous attempts have been made to relate magnetic structures observed in connection
with a solar eruption and the subsequent properties of the magnetic flux rope observed at 1
AU. These have met with mixed success. In an early study, ? correlated the source regions
of five strong −Bz events observed at 1AU, inferring that the computed field orientation
at the point in the corona were the acceleration of the ejecta ceased matched with in-situ
measurements. In another study, Leamon et al. (2004) related the magnetic properties of
magnetic clouds to their associated active region sources. In particular, they looked at
the helicity, finding that the twist within the cloud was typically an order of magnitude
greater from the twist measured in the active region. Bothmer & Schwenn (1998) found a
good correlation between MCs and large quiescent filament disappearances. Specifically, the
magnetic orientation of the prominence axis, the polarity of the overlying field lines, and
the helicity pattern of the filaments “agreed well” with the properties of the MCs. While
qualitative inferences of the degree of match cannot be used in a quantitative prediction
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scheme, the results suggest that a statistically-based approach, such as a neural network or
regression technique, which incorporates all of the potentially relevant features, may yield a
predictive capability.

Fry et al. (2003) compared predictions of shock arrival times with the HakamadaAkaso-
fuFry version 2 (HAFv.2) model finding that the model performance was as good, but no
better than the simpler STOA model.

Vandegriff et al. (2005) described a technique for predicting the arrival time of interplan-
etary shocks at Earth, not based on the forward propagation of signatures discerned near the
Sun but based on energetic particle signatures observed at 1 AU prior to the shock’s arrival.
They found that the predicted arrival time of the shock was accurate to within 8.9 hours
24 hours in advance and 4.6 hours when the shock was 12 h from the spacecraft. Although
these uncertainties are not obviously better than NOAA/SWPI’s estimates of ±6 h based
on a prediction made several days in advance, they offer a unique extra piece of information
– that the event has generated a shock that will intercept Earth. Cone-model-based predic-
tions do not necessarily have the ability to predict whether the shock will necessarily impact
the Earth, or whether it will be a glancing collision. Moreover, in principle, analysis of the
energetic particle signatures can provide insight into the strength of the following shock,
which in turn, provides albeit indirect information about the properties of the driver ejecta.

2.4.3.1 Cone-Model ICMEs A subset of PSI’s modeling suite, CORHEL, consists of
the WSA-Enlil model, with a cone-model CME generator, which recently became the Na-
tional Weather Service’s first space weather model, running real-time at NOAA’s Space
Weather Prediction Center (SWPC) (Farrell, 2011). Although Enlil is a global MHD code,
it currently treats CMEs as plasma ejecta, specifying the location of ‘launch’ (on a sphere of
height 30RS), direction, speed, density, and duration. We have developed a similarly capable
version of the cone model (?) using a recently developed massively parallel interplanetary
version of our global MHD algorithm (Lionello et al., 2013). In either case, however, the
lack of magnetic structure within the ejecta precludes it from giving meaningful predictions
of the flux rope field. It can, however, provide information on the field in the sheath region,
which, at least for fast events, has been draped over the ejecta. We have also begun investi-
gating techniques for incorporating magnetic fields within the ejecta. One idea that appears
promising was motivated by more theoretical results from TDm simulation results, suggest-
ing that substantial reconnection could occur under a flux rope leading to a spheromak-like
structure. Although we found that the in-situ profiles from such an event can mimic the
observed rotations within observed ejecta (e.g., Figure 5(c)), it remains to be seen whether
this can lead to a robust estimate of flux rope fields. An alternative idea, which would
allow one to retain the simplicity of the cone-model approach would be to “kinematically”
incorporate, say, a force-free type flux rope close to the Sun (e.g., Owens et al. (2006)),
using the evolving velocity field to distort the flux rope as it is propagated through the inner
heliosphere (Riley & Crooker, 2004). This would require knowledge of the orientation of the
flux rope axis, which could be inferred from several remote solar observations, although not
without substantial caveats.

Krall & Cyr (2006) developed a simple technique for parameterizing a three-dimensional
flux rope based on white-light observations. The synthetic images produced capture many
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Figure 4: (a) and (b): Two 3-D views of ICME (simulation 15) as it approaches 1 AU. The
legends to the left of each panel indicate what parameters are being displayed. A selection of inter-
planetary magnetic field lines are also shown. (c): Comparison a hypothetical observer (simulation
15) at 1 AU with STEREO A velocity measurements. This ICME was launched with an initial
speed of 2500 km/s, consistent with remote solar observations.

of the features observed in the eruption of simple limb events, and, although they did not
develop it, in principle, the technique can be used to estimate the orientation of the flux-rope
axis. This, however, would require observations at quadrature to predict Bz at Earth, or
an in situ spacecraft located at quadrature to test the efficacy of the model to predict Bz

orientations. As with many of these techniques, the concept is simple, its implementation is
straightforward, and it’s ability to predict Bz has not been ascertained. Thus, it represents
an ideal method for testing.

2.4.3.2 Predicting Bz within Sheath Regions of ICMEs Echer et al. (2008) esti-
mated that the sheath regions of ICMEs are responsible for ∼ 25% of all intense (Dst <
−100nT) geomagnetic storms. Thus, an accurate estimate of these intervals alone is an im-
portant component of any prediction scheme. Although current cone models do not contain
intrinsic magnetic fields within the ejecta, they should, in principle, be able to reproduce the
essential large-scale features of CME sheaths. We envisage at least two processes that could
contribute to producing a non-zero Bz within sheath regions. The first, as already noted is
due to the process of draping. As ambient solar wind is swept up, field lines are caught up
and dragged through the solar wind by the ejecta. A second, and more subtle effect, however,
concerns the effects of the shock itself. It is well known, based on the Rankine-Hugoniot
(RH) relations, that the magnetic field changes direction across a shock (e.g., Priest (1982)).
Specifically, the magnitude of the tangential (relative to the shock normal) component is not
conserved. Across a fast-mode shock this translates into a compression, with the resulting
effect that the magnetic field vector is deflected away from the shock normal. Thus, with
prior knowledge of the likely properties of the shock as passes Earth, the amplification of
the tangential component can be estimated and converted into a Bz component (Horbury,
Personal Communication, 2014). In principle, this effect should already be directly included
within global cone-model simulations such as Enlil. However, this information can also
be derived independently from Heliospheric Imager observations when available, which will
provide estimates of the shock/sheath orientation and strength, coupled with more reliable
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estimates of the modeled ambient solar wind at Earth. Moreover, global MHD models of
CME ejecta themselves are not capable of reproducing the small-scale (but large amplitude)
fluctuations produced by waves and turbulence, opening up the possibility of using the RH
approach to estimate the amplification of this contribution to Bz. In the proposed investiga-
tion, we would use various combinations of these inputs, as well as other heuristic approaches
to estimating the characteristics of CME-sheath regions (e.g., Russell & Mulligan (2002)),
testing the predictions with a large sample of previously identified CME-driven shocks (e.g.,
Pulupa et al. (2010)).

2.4.4 Physics-based Models of ICMEs

The modeling group at PSI have developed state-of-the-art global models of CME initiation
and evolution for many years (e.g., Linker & Mikić (1995); Linker et al. (1996, 2001); Riley
et al. (2003); Linker et al. (2003); Riley et al. (2007); Riley et al. (2008); Riley et al. (2008)).
However, they are – at least at present – time consuming; both in terms of computer time and
personnel. Thus, we developed an interim solution that bridges the gap between “empirically-
based” models and these “first principles” models. The current version of this practical
CME generator relies on a modified description of the TItov-Démoulin flux rope model.
The essential difference between these types of models and either empirically-based models
or statistical models is that we anticipate deriving a greater physical understanding of the
processes that give rise either to the eruption and/or evolutionary properties of CMEs and
their interplanetary counterparts. For this specific investigation, however, this promised
understanding is of value only if allows for a better prediction. We further anticipate that,
at least initially, these types of models will not provide forecasts that are as accurate as
the simpler approaches. However, it is likely that this will change in the foreseeable future.
Moreover, by including them at the outset, we provide quantitative skill scores that these or
any comparable model must exceed to be considered better from a predictive standpoint.

2.4.4.1 Pre-Existing Flux Rope Eruptions: The modified Titov-Démoulln (TDm)
model is an analytic model of a force-free coronal flux rope embedded within the solar
corona The eruption can be initiated by either allowing the initially out-of-equilibrium flux
rope to erupt, or by first establishing an equilibrium for the flux rope, then introducing a
perturbation (such as canceling flows near the polarity inversion line), which then produces
an eruption. Because the initiation process is not treated self-consistently, we cannot address
fundamental questions about how, and when the flux rope formed. On the other hand, for
the proposed work, answers to such questions are only of value if they qualitatively effect the
resulting magnetic structure of the ejecta. We have found that the more self-consistent the
model, the more idealized, or generic the solutions tend to be. By constraining the boundary
conditions with a limited number of easily specifiable parameters, however, we are able to
better match actual observations. Additionally, we believe it is possible to use available
observations to constrain the initial characteristics of the flux rope (location, orientation,
axial field strength), providing the key ingredients for a predictive type of model, in much
the same way that cone-model simulations are routinely driven by parameters derived from
white-light observations (Odstrcil & Pizzo, 2009).

It is worth noting, however, that our investigation will not be restricted to applying the
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Figure 5: (a) White-light images (polarization brightness) for the simulated CME eruption in
(b). (b) Eruption of the TD flux rope after canceling flows at the photosphere are introduced. (b)
Left: Magnetic field lines colored by the plasma temperature and; Right: plasma temperature and
density in a plane passing through and parallel to the flux rope. (c) Time history of local plasma
variables at 1AU for a point situated in the path of the ICME. The magnetic field vectors have been
converted to Geocentric Solar Ecliptic (GSE) coordinates. The red highlighted region indicates the
compressed solar wind downstream of the ICME. The green region indicates the flux system of the
ICME. The blue region indicates the trailing plasma, which was compressed by a high speed stream
behind it.

models described here. Should we find that another semi-empirical approach is likely to yield
better predictions, we will employ that approach. The group at the University of Michigan,
for example, pioneered the use of an out-of-equilibrium model for CMEs by superimposing
the TD flux rope onto a coronal solution (Manchester IV et al., 2008; Lugaz et al., 2011).
This approach has yielded valuable insight into the evolution of flux ropes through the corona
and into the solar wind, but also suffered from notable limitations, including the introduction
of artificial forces into the system as well as an overestimate of the likely energy available
to the flux rope. The approach is straightforward to implement, however, and may lead to
better predictions of Bz provided the inputs can be tuned and/or estimated from available
observations. Similarly, Kunkel & Chen (2010) applied the erupting flux rope model (Chen,
1996) to reproduce, among other parameters, the magnetic field within the interplanetary
flux rope. If this can be applied in a predictive manner, it is simple to implement and apply,
thus lending itself to testing within this framework.

paragraph“First Principles” Models of CMEs
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Our group at PSI has, and continues to investigate fundamental issues related to the
initiation and evolution of CMEs in the corona and solar wind (e.g., Mikić et al. (2013)) and
to improve the physics describing the origin of the slow and fast components of the solar
wind (Lionello et al., 2014) through the incorporation of waves and turbulence. As noted,
these types of simulations are extremely time consuming and could not, at least currently,
be incorporated into a predictive scheme for forecasting Bz. However, we recognize that
as these models improve and more computational resources are provided for their use, it
may become feasible for them to find a place within the modeling framework. Thus, it is
necessary to include them, to the extent possible, within any comprehensive framework. The
development of this code is being funded as part of other investigations, thus, we propose to
leverage this work here, principally, by analyzing model results for specific events, identifying
where these model results are better or worse than the other approaches and identifying how
such models can play a predictive role in the future. The questions we are asking using first-
principle models may also provide insight into this proposed investigation. For example, why
is there such a disparity between the twist observed in the source region of the CME and
the measured twist of the ICME? (Leamon et al., 2004). Why are only a fraction of ICMEs
observed to be, or at least contain flux ropes? (Riley & Richardson, 2013). How are ICMEs
magnetically connected back to the Sun? (Riley et al., 2004).

Another exciting possibility exists through the use of MHD model results to map solar
sources to their locations at 1 AU (Riley et al., 2008). Although the process of relating coronal
signatures with their interplanetary counterparts would not initially, or perhaps definitively
provide a one-to-one correspondence, such analyses could be used to identify the key solar
signatures, which, if present, would predict a corresponding feature at 1 AU. This could, in
turn, be combined with the statistical approaches defined above: Data mining techniques,
such as those developed to recognize specific features in SDO remote solar observations
(Martens et al., 2012; Banda & Angryk, 2009) could be used to define a necessary grouping
of features with certain characteristics that correspond to a particular profile at 1 AU. This
would be guided and/or confirmed through the physics-based simulations.

2.4.4.2 “Hybrid” Predictions: An intriguing possibility lies in combining the pre-
dictions from different types of empirical and physics-based CME models. For example,
one could combine either white-light or HI observations with magnetic field observations
of the flux rope observed by Messenger at Mercury. Although this would only work un-
der certain conditions and geometries, it could provide a unique prediction of what the
combined magnetic/plasma structure of the CME was near to the Sun, but sufficiently far
that it could be evolved either kinematically (e.g., Riley & Crooker (2004)) or using a a
(magneto)hydrodynamic algorithm. Alternatively, one could use the cone model, which has
arguably the best capabilities of propagating the ejecta and associated shock to 1 AU, to
specify the large scale non-magnetic properties of the event at 1 AU. Into this, a force-free,
TDm, or even first-principles model could be embedded. The rationale is that for the force
free model, there is no information about its propagation through the heliosphere, while for
the latter two, the initial eruption speed may not be accurately produced by the simulation
leading to inaccuracies in it’s evolution between the Sun and 1 AU.

Typically, our global model solutions are constructed from coupled coronal and helio-
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spheric models, where the output from the coronal solution is used to drive the heliospheric
simulation. However, for the purposes of predicting solar wind structure only at one point in
the heliosphere, e.g., at Earth, it is not clear that a global heliospheric model is required. In
fact, we have shown that a simple mapping procedure that takes into account the dynamic
evolution of solar wind streams can evolve solar wind structure from near the Sun to 1 AU
(Riley et al., 2011). It has not yet been established whether the same technique could be
successfully applied to ICMEs; however, given its simplicity and speed it should be included
as a component in our comprehensive modeling approach for evolving structure near the Sun
to 1 AU.

2.4.5 The Ambient Solar Wind

While prediction of the ambient solar wind in the absence of any transient phenomena is
likely not a high priority from the perspective of geo-effective consequences (although all-clear
forecasts are important), the role of the quiet-time solar wind is crucial in the evolution and
hence prediction of large excursions in Bz produced by ICMEs. Fast CMEs, for example, are
more significantly distorted and decelerated when slow and dense ambient wind lies ahead.
Moreover, the properties of the wind into which the CME propagates will be modified by its
passage: Large-scale deflections across the CME-driven shock will alter the perpendicular
components of the IMF. Additionally, the presence of large-amplitude Alfvén waves in fast
solar wind will result in the large and temporally compressed Bz fluctuations.

2.4.5.1 Persistence and Probabilistic Forecasts Although our goal will be to provide
real-time, event-driven predictions, at a minimum, we can use combinations of persistence
and probabilistic forecasts to make crude estimates for Bz in the absence of any other reliable
information. Persistence refers to the assumption that the Sun today is exactly as it was
one rotation earlier. If so, we can use those data to predict the next 24 hours or even 27
days, obviously with much larger uncertainties. Probabilistic forecasting summarizes what
is known about likely future events by assigning a probability to a range of outcomes. This
may offer some value during intervals surrounding stream interfaces (McPherron & Siscoe,
2004). Such techniques were employed in terrestrial meteorology prior to the development
of sophisticated global circulation models. It is not yet clear whether space meteorology has
yet crossed the threshold whereby models outperform these statistical approaches. Thus, it
seems prudent to include them in our arsenal.

2.4.5.2 Waves and Turbulence Our discussion so far has focused on the large-scale
variations in the IMF. However, a substantial amount of power is contained within higher fre-
quency waves and turbulence. From a prediction point of view, these are the most challenging
to attempt to forecast. However, from a geo-oeffective standpoint, their phase information
is not as important as their statistical properties. Thus, we can superpose a contribution
from waves and turbulence, based on properties of the predicted large-scale field at that
time which contains contributions up to the highest frequencies, and which is statistically
indistinguishable from observations. The properties of the turbulent solar wind are well es-
tablished both as a function of solar wind (e.g., slow/fast) and phase of the solar cycle. The
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Figure 6: Three-ensemble averaged power spectra of (a) magnetic field strength; (b) radial com-
ponent; (c) azimuthal component; and (d) z-component of magnetic field. The blue profiles were
computed for the year 1996, corresponding to the minimum of solar cycle 23 while the red profiles
were computed for the most recent solar minimum. Regions of wave/turbulence dominance are
indicated.

magnetosphere’s response to them too will likely not depend on their relative phase (Merkin
et al., 2007), at least beyond some threshold frequency.

2.4.6 Relevant Data

Our proposed work will rely on the full range of datasets produced by NASA missions. Time
series data of the IMF field vectors will of course be important, as well as speed, density,
and temperature to validate model predictions. Additionally, remote sensing white light
images will drive cone-model simulations and provide key clues about the three-dimensional
structure of the ejecta, including, possibly, the orientation of the flux-rope axis. Heliospheric
Imager data from STEREO will provide important information on the propagation and
evolution of some ICMEs. EIT and X-ray images will provide important feedback on the
quality of global model solutions and may provide “actionable” information for making
predictions. Sigmoid structures, dimming regions, and EIT waves, for example, can be used
to provide timing information during an eruption. On the other hand, while relevant, it is
not a priori clear whether it will lead to useful information from a forecasting perspective.
Similarly, flare data can be used as a measure of the speed of the ensuing ejecta, but it’s
relationship to the orientation of the ICME’s magnetic field is likely tenuous. Photospheric
magnetic field measurements, while providing a direct measurement of the parameter we
are hoping to estimate at 1 AU must undergo significant transformation before reaching the
Earth. Although several tentative steps have been taken to relate magnetic features in the
photosphere to 1 AU observations of magnetic clouds (ref), the link remains weak. Finally,
sub-surface measurements of flows...
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We can leverage the work by the Montana State University group, who have developed
a feature recognition algorithm for SDO observations. Various combinations of different
structures/phenomena can be incorporated into the pipeline we are proposing and tested for
efficacy.

2.4.7 Ensemble Modeling

A crucial advance that propelled terrestrial modelers forward was the development of ensem-
ble modeling techniques, and we can implement some of these approaches in our proposed
investigation. Ensemble forecasting is defined as a method of prediction that relies on the
use of a representative sample of possible future states to derive a prediction. One of the
appealing aspects of such an approach is that it offers a rigorous method for computing con-
fidence bounds of the solution by estimating the uncertainty in the ensemble (Wilks, 2006).
Moreover, the mean of the ensemble of forecasts is, or should be more accurate than the
forecast from any individual member; the reason being that the random, or unpredictable
regions of the forecast tend to cancel one another, while the aspects of the forecast that the
majority of the models agree on are not removed (Warner, 2010).

Ensemble modeling techniques have only recently and tentatively been applied to the he-
liophysics environment (e.g., Riley et al. (2012); Riley et al. (2013); Pizzo (2014)). However,
they have been developed, tested, and rigorously applied within the terrestrial weather com-
munity for more than a decade, thus, providing a wealth of resources that can be adapted
to space weather phenomena. For our specific objective, however, we can simplify matters,
by defining the following ensemble model:

B̂z(t) =
K∑
i=1

ωiBz(t), (1)

where ωi are the model weights and sum to one (
K∑
i=1

ωi = 1) (Wichard & Ogorzalek, 2004).

Intuitively, equation (1) illustrates that those predictions that produce robust and reliable
forecasts will also be associated with large weights. Less reliable models will be discounted
and even removed from the ensemble if ωi < ωc.

2.4.8 Metrics, Probabilities, Skill Scores, and Confidence Intervals

Model validation refers to the task of identifying the strengths and weaknesses of a model
through detailed comparisons of model output with observations. Similarly, metrics are
used to measure the long-term trends in model improvement. Whereas model validation
involves a comprehensive comparison of all available data, metrics target a small set of
specific benchmarks. Our goal here is singularly focused: to obtain the best prediction
of Bz with up to 24 advance warning. Although improvements in attaining this goal will
undoubtedly help us predict other parameters of interest, attempting to optimize prediction
of multiple parameters could adversely affect our ability to predict Bz.

We will define a number of metrics to track our progress. For example, we will employ
both mean-square error (MSE) estimates, as well as event-based tests, such as the arrival
time of sector boundary crossings. From these analyses, it is straightforward to define “skill
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Figure 7: (a) A subset of model realizations computed for CR 2062. (b) ‘Whisker” plot of model
realizations from (a) at 30RS in the equatorial plane: Black line is the ensemble solution; red are
in-situ measurements; and boxes with “whiskers” summarize the variability of the realizations. (c)
A “Taylor diagram” for summarizing the performance of model runs. See (Taylor, 2001) for further
details. The blue squares mark the new locations of the solutions when the base temperature is raised
from 1.8× 106K to 2.5× 106K.

scores,” which track the improvements in the model over time. Once defined, metrics are
simple to compute on a regular basis.

A confidence interval (CI) is used to indicate the reliability of an estimate. It is a
measure of our confidence with a particular prediction, or alternatively the likely uncertainty,
typically given at the 95% level. Thus, in addition to estimating retrospectively how well our
predictions performed, we will also provide prospective confidence intervals for all predictions
made. CIs can be constructed in a number of ways. We could, for example, combine the
output from different models (both statistical and mathematical) to derive an estimate of the
CI. Not surprisingly, the CIs in a predicted time series of Bz would increase as the prediction
stretched farther into the future. Importantly, they would provide a direct and quantitative
indication of the quality of the prediction to the user. Moreover, as the prediction scheme
improved, uncertainties would be seen to decrease, providing an additional metric to track.
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The forecast effort is the difference between the actual measured value of Bz (Bz,t) and

the forecast (B̂z,t):

Et = Bz,t − B̂z,t (2)

From this, we can develop a number of measures of the aggregate error, which describe the
accuracy of the prediction over some interval t = 1, N . These include the mean absolute error
(MAE), mean absolute percentage error (MAPE), mean absolute deviation (MAD), percent
mean absolute deviation (PMAD), mean squared error (MSE), and root mean squared error
(RMSE). For illustrative purposes, and because of their application in space weather model
comparisons, MSE and RMSE are:

MSE =

∑N
t=1E

2
t

N
(3)

RMSE =

√∑N
t=1E

2
t

N
(4)

Additionally, the forecast skill score (SS) is defined by:

SS = 1 − MSEforecast

MSEref

(5)

where MSEref is the mean square error calculated from some standard, reference model,
typically the simplest and least accurate in the suite. Thus, SS serves as a measure of how
well (or poorly) model refinements perform.

Thus far, we have assumed a goal of predicting Bz as a function of time. It is likely,
however, that at least for some parties, a forecast probability would be more appropriate.
For event predictions, such as the time of arrival of a shock, a high-speed stream, or a sector
boundary crossing, this can be phrased simply by the probability that the event will, or
will not occur within the next 24 hours, say. We might generalize this concept for Bz by
estimating the probability that Bz exceeds some negative threshold, say, −10nT for some
period of time, say, 6 hours, again within the next 24 hours, say. These values would
be situation-dependent: Different customers would likely have different requirements if the
forecast probability was to be useful to them. ‘All clear’ forecasts based on the absence of
such events would also likely have value to a wide range of users.

2.5 Proposed Contributions to the Focus Team Effort

NASA’s Living With a Star program (LWS) seeks to...
More generally, NASA’s Heliophysics Research Program aims to “Understand the fun-

damental physical processes of the space environment from the Sun to Earth,...” and to
“enabl[e] the capability to predict the extreme and dynamic conditions in Space. Our ob-
jectives directly address these science goals by investigating the properties of CMEs, whose
impact with the Earth’s magnetosphere can cause a range of adverse effects. Ultimately,
these results may drive, or at least contribute to models with predictive capabilities.
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2.5.1 Relevance to the scientific objectives of the Focused Topic

2.5.2 Contributions to the Focused Science Team’s effort

e.g., data sets, simulation results, understanding of physical mechanisms, etc.

2.5.3 Metrics and milestones for determining success of proposed research

2.6 Outline of the General Plan of Work

This proposal is for four years. Our principal goals are to: (1) define a set of robust metrics
for quantitatively, reliably, and efficiently assessing a range of prediction techniques for esti-
mating IMF Bz at 1 AU with up to 24 hours advance warning; and (2) develop techniques for
predicting Bz – both in the short and long term – that have the most likelihood of success.

• First Year

– Develop a Bz Prediction Framework (BPF) that can be downloaded and in-
stalled by all team members. We will use a combination of shell scripts, Fortran,
C/++,and R/Python served from and Subversion (SVN) repository, providing a
platform-agnostic toolkit;

– Populate the BPF with a limited subset of the predictive algorithms outlined
above. These will be prioritized based on several factors, including likelihood of
success and ease of implementation;

– Assemble the necessary datasets as well as any relevant meta-datasets for driv-
ing, testing, and validating the BPF. Some will be stored directly in the SVN
repository while others will be either disseminated from PSI or from their original
source location;

– Complete initial set of validation studies, computing relevant metrics and skill
scores. Focus initially on predicting ambient solar wind and simple CME events;

• Second Year

– Incorporate more models into BPF;

– Incorporate dynamic time warping into time series pattern recognition technique;

– Compare various physics-based model predictions for a set of ICMEs that cover
the range of observed events;

– Write set of papers documenting the BPF as well as the initial results from its
application and present results at scientific meetings;

• Third Year

– Develop a statistical model (e.g., NN) that incorporates automatically recognized
solar features (dimmings, sigmoids, flares, etc);

– Initiate contact with NASA (CCMC) and NOAA (SWPC) and discuss possible
avenues for delivering and/or operationalizing the BPF;
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– Perform parametric studies of all models and combinations thereof to optimize
the predictive capability of the BPF;

– Revise and refine validation studies, computing a comprehensive set of skill scores
and model uncertainties for all model combinations. Publish results in peer-
reviewed journal and present current status at selection of meetings and/or work-
shops;

• Third Year

– Investigate efficacy of running first principle models for specific events as a pre-
dictive model;

– Complete development of BPF, including full documentation, and make available
to scientific community;

– Deliver a BPF to NASA/CCMC and/or NOAA/SWPC;

– Write final set of peer-reviewed manuscripts comprehensively describing the BPF
and the the various modules developed for it. Attend selection of scientific meet-
ings to promote the use and availability of the BPF.

Although our proposed work appears ambitious, it is necessary if we are to make mean-
ingful advances in our ability to predict Bz. Additionally, we will leverage a wide range
of past and existing studies spearheaded by co-investigators of the present proposal. This
include: (1) A recently-funded Air Force project (Jon Linker, PI) to use global CME models
to predict solar wind conditions, and Bz, in particular, at 1 AU; (2) an NSF-funded project
to understand extreme space weather events all the way from the Sun to the Earth (co-Is
Pete Riley and Jon Linker); (3)

Our team has, or is developing most of the models we are proposing to test in this effort.
Thus, the emphasis is more on development of the framework to quantitatively test them as
well as the insight on how to best combine them to improve our predictive capabilities, not on
the development of the models themselves, which has or is being funded in complementary
work. A crucial aspect of our approach concerns our biweekly web-based meetings and
twice-yearly face-to-face meetings. We believe that through these largely conceptualizing
interactions, our team of experts will be able to formulate novel and related ideas that can
then be tested within the BPF.

2.7 Management Plan

The investigation outlined here requires a well-directed and coordinated management plan.
In addition to the intrinsic value bought by individual team members, we believe that a key
factor in our success lies in the members’ abilities to think outside of their specific areas
of expertise. It is crucial that we meet on a regular basis to develop and test new ideas
and report back on progress made. We propose to hold monthly web based meetings (using
Citrix’s GoToMeeting) as well as two in-person meetings, one in Southern California and the
other in Boulder, Colorado. Each team member is fully aware and has agreed to the specific
and focused goals of the proposed work and will devote their effort to achieving them. We
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anticipate that as certain avenues of research prove more or less promising, our emphasis
may fall into adjacent and even unforeseen areas.

Pete Riley (PI, Predictive Science, San Diego, CA) will manage, and be responsible for
the completion of the proposed research. He will work with Co-I’s Roberto Lionello, Chris
Russell, Roger Ulrich, Vic Pizzo, Curt de Koning, Alysha Reinard, Todd Hoeksema, and
Yang Liu, and collaborators Jon Linker, Tim Horbury and Matt Owens, to undertake the
tasks outlined here. Dr. Lionello will..., etc. In addition, we currently support undergraduate
interns on a variety of computer- and science-related projects, and we will include them in
portions of this investigation, as appropriate. The study will be carried out in collaboration
with Drs. Horbury and Owens at Imperial College and the University of Reading, respec-
tively, who will provide expertise and insight during the planning stages of the investigation
as well as interpretation of the results. This will complement projects they are currently
managing at their institutions.

In addition to the specific areas of expertise outlined above, a crucial element in the selec-
tion of the team members lies in their breadth of study over the years. This FST’s objective
is unique in its specific objective, requiring that the team be able to adapt to initial results
and possibly move in directions that they had not originally considered. For example, should
it be found that sub-surface inputs are only marginally relevant, Dr. Reinard’s expertise in
analyzing and interpreting in situ measurements will assume a larger role. Similarly, Dr.
Pizzo’s vast expertise in modeling both from first principles to empirically based approaches
demonstrate his ability to adapt to even more obscure modeling approaches, including those
encapsulated under the “machine learning” moniker. Dr. Riley has worked both with sta-
tistical and physics-based models, and has analyzed a wide array of both remote solar and
in situ measurements. All team members are both aware of, and have agreed that their role
and contribution to the success of this proposal may require them to undertake new and
perhaps unanticipated studies in pursuit of the effort’s goals.
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A Facilities and Equipment

At Predictive Science Incorporated (PSI), San Diego, California, we maintain a set of Macin-
tosh workstations that are more than adequate for meeting the data-processing, storage, and
analysis requirements of the proposed investigation. Any necessary large-scale computations
of CME initiation and evolution will be performed on on massively parallel computers at
NASA (Pleiades) and NSF (Stampede) through other contracts, for which we currently main-
tain, and envisage receiving further allocations sufficient to perform the proposed work. We
maintain a Subversion (SVN) repository for all of team-oriented code development projects
(e.g., CORHEL) and will develop a complete SVN package to serve the algorithms and data
for the proposed work. This will be used by all team members and, in due course, opened
up to the scientific community.
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