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Abstract Solar synoptic charts are normally displayed using Carrington
Coordinates with each Carrington rotation being centered at a Carrington
longitude of 180± and with a full 360± of solar surface properties included. For
the case of reproducing solar magnetic ¯elds in the corona and heliosphere,
these maps are wrapped onto the solar surface to provide the boundary con-
ditions for a solution to a set of modeling equations such as the potential ¯eld
theory equations. Due to di®erential rotation, the full solar surface cannot
be reproduced in this fashion since di®erent parts of the solar surface are
observed at di®erent times. We describe here the proper technique for com-
bining observations of the solar magnetic or velocity ¯elds made at di®erent
times into a representation of the whole solar surface at a particular speci¯ed
time that we refer to as a \snapshot heliographic map".

Keywords Magnetic Fields, Di®erential Rotation

1 Introduction

The display of properties of the solar surface in terms of time, location, and
strength depends on the de¯nition of a coordinate system for the Sun. Since
the Sun is gaseous and has no permanent demarcation points to use as a
reference, the convention established by Carrington (1863) has been followed
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based on a ¯xed rotation rate and an arbitrary zero point. For any observation
of a feature or physical quantity on the apparent solar disk, standard methods
of spherical astronomy, such as described by Smart (1962), can be used to
convert the position of measurement expressed as an angular o®set relative
to ¯xed points on the apparent solar disk (typically x; y angular distances
relative to the disk center based on the solar axis of rotation as the y axis)
to a heliographic latitude and longitude with the latter taken relative to the
zero point de¯ned by Carrington. The detailed methods of converting solar
observations into modern coordinate systems have been described recently
by Thompson (2005). When a number of observations from many days are
combined and plotted relative to the Carrington longitude and latitude the
resulting ¯gure is called a \synoptic chart", and Carrington (1863) was the
¯rst to produce such charts. The rotation rate was chosen by Carrington to
track the apparent movements of sunspots across the solar disk. Carrington
also recognized that many features move relative to these coordinates, and
he used what is now called a stackplot to illustrate these displacements.

Full-Sun magnetic maps can be used either to represent conditions on the
solar surface at a particular point of time in the past in the most satisfactory
manner or to project conditions into portions of the solar surface that are
not observed. For the ¯rst purpose, it has been common to create synoptic
charts based on the best observed portions of the solar surface near the Sun's
central meridian, and this is the format usually encountered. For the projec-
tion into portions of space and time where observations are not available,
physics-based, °ux transport models have been used by a number of workers
(Devore et al. 1985; Worden and Harvey 2000; Schrijver 2001; McCloughan
and Durrant 2002; Durrant and McCloughan 2004) to make predictions of
magnetic ¯eld strength. These predictive treatments have been careful to
treat the solar surface in coordinates at a particular instant in time through
a remapping process. We are concerned in the present paper with the task of
representing observed properties of the Sun in the most reliable manner and
in the preparation and interpretation of synoptic charts. Such charts have
been used by for example Worden and Harvey (2000) as input to the physics
based model and by Arge and Pizzo (2000) in the computation of proper-
ties of the solar wind. We provide in the present paper methods of treating
the variables used in standard synoptic charts in a manner that properly
accounts for the distorting e®ects of di®erential rotation.

Solar longitude is an angle giving position on the solar surface at a partic-
ular moment of time. A traditional synoptic chart extracts properties of the
solar surface that are near the central meridian at the time of observation and
includes only a limited range of central meridian angle. For central meridian
angles larger than about §20±, di®erential rotation causes features to change
their heliographic longitude as a function of observation time so that averages
over multiple observations are smeared. Synoptic charts are most commonly
prepared using Carrington's rotation rate to de¯ne longitude. The smearing
we correct comes from the di®erence between a feature's rotation rate at a
particular latitude and the Carrington rate. Generally the feature rates are
smaller than the Carrington rate because the higher latitudes rotate much
more slowly than the near-equator regions. Some features such as magnetic
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patterns have a rotation rate greater than the Carrington rate near the equa-
tor. The methods described here apply to all forms of di®erential rotation
rate although the ¯gures have been prepared using the magnetic feature rate.
If we had used the rotation rate appropriate to the Doppler-shift velocities,
all portions of the solar surface would rotate more slowly than the Carrington
rate.

The Mt. Wilson group has corrected each observation for the e®ect of
di®erential rotation prior to summing (Ulrich et al. 2002; Ulrich and Boyden
2005). In order to distinguish these synoptic charts from traditional synoptic
charts we use the term \Di®erential Rotation Corrected" synoptic charts or
\DRC" charts for the resulting representations. We have also reversed the ab-
scissa and plotted multiple DRC charts next to each other to create what we
term a supersynoptic chart. In the supersynoptic chart format, the abscissa
is in fact the time of central meridian crossing for each point. This paper
gives the details of the transformations needed to carry out this di®erential
rotation corrrection in order to produce one of two types of synoptic map {
1) a DRC synoptic chart in which the abscissa is not a longitude angle and
2) a \Snapshot Map" which is a DRC heliographic map in which the abscissa
is a longitude angle at a speci¯c time.

Our treatment is based on the correspondence between Carrington lon-
gitude and time. The central meridian (CM) crossing time of Carrington
longitude 0± for Carrington rotation zero de¯nes a starting point for a time-
like variable which then progresses forward at a rate of one unit per synodic
Carrington rotation period. This de¯nition is presented in more detail in
the next section of the paper. The Carrington Rotation Number (N) is the
integer number of Carrington rotations from this starting time. We can de-
note the time a point crosses the CM as the real number of Carrington units
including the fractional part of the rotation. The convention of having the
longitude increase from East to West while the western parts of the solar
surface cross the CM before the eastern parts means that within each Car-
rington rotation, the heliographic longitude of the CM decreases with time.
Consequently, the fractional part of the rotation appropriate to Carrington
longitude L (in degrees) crossing the CM is 1¡ (L=360±) instead of L=360±.
To make it explicit that this longitude-like time of CM crossing measured in
Carrington rotation units is not an integer, we term this variable the \Car-
rington time" of the point and use the symbol ¿N . The superscript N denotes
the Carrington rotation number on which the point crosses the CM and is
included for reasons discussed below.

We illustrate with a speci¯c example of the calculations needed to carry
out this di®erential rotation correction. Figure 1 shows an arbitrary sample
observation of the solar surface at a time when the CM is at Carrington
longitude 140± and a sample point is observed at a. We have picked point
a so that it will cross the CM three quarters of a Carrington rotation after
the most recent CM crossing of Carrington longitude 0±. At the time of this
observation, the point is not at Carrington longitude 90± because it rotates
more slowly and is at a negative Central Meridian Angle (CMA) closer to
zero as shown. If we replace the point's observed heliographic longitude by its
heliographic longitude at the time it crosses the CM, we will have a longitude-
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Figure 1 The smearing e®ect of di®erential rotation and the shift needed to correct
for the e®ect by shifting the position of the observed point. The heavy outer rectan-
gle de¯nes the edges of the map of the full solar surface at the time of observation
based on the solar axis of rotation. The heavy solid lines within the rectangle give
the solar equator and central meridian. The heavy dashed lines show the location
of the Carrington longitude 0± and 180± points for this example. A typical point is
observed at position a with a central meridian angle CMA. Based on its latitude,
we can determine the time required to reach the central meridian. The locus of
points requiring this length of time is shown as the light solid line passing through
a. We shift the point to location b so that it would take that same interval of time
if it were rotating with the Carrington rate. Points from separate observations will
have a di®erent central meridian angles but they all have the same central meridian
crossing time and are shifted by an angle calculated according to the above geom-
etry, they will all represent the same solar surface feature and will not be smeared.

like variable which will remain constant provided we have adopted the proper
rotation rate for the latitude in question. The shift in the e®ective longitude
brings the point from a to b in Figure 1. Notice that for this observation,
the time of CM crossing is (140 ¡ 90)=360 Carrington rotations later than
the time of observation; i.e. the CMA o®set is negative while the time o®set
is positive due to the conventional de¯nition of heliographic longitudes. This
example illustrates the tranformations we need to carry out in general in
order to correct for di®erential rotation.
Each magnetic feature on the solar surface has a unique CM crossing

time ¿N during Carrington rotation N . At higher latitudes, the time inter-
val between successive CM crossings by a magnetic feature is greater than
the Carrington rotation period; i.e. the Carrington time interval between
successive CM crossings is greater than unity. Because the Carrington time
advances one unit per Carrington rotation, while magnetic features have a
rotation rate di®erent from the Carrington rate, the Carrington time for a



5

feature on successive CM crossings does not advance by unity. For example at
a latitude near 60±, the rotation rate is about 20% slower than the Carrington
value so that a feature crossing the CM at a Carrington time of, say, 1950.5
will cross the CM after the Carrington time advances by 1.25 at a Carrington
time of 1951.75. Successive transits of the CM are not separated by unity in
Carrington units except at that latitude where the rotation rate equals the
Carrington value. This is why high latitude features drift relative to the Car-
rington longitudes when plotted using a stackplot format. This property of
a tracked feature is expressed formally by the statement: ¿N§1 6= ¿N § 1.
Clearly, we need to specify N in order to fully de¯ne the Carrington time of
the feature. Pairs of points at di®erent latitude but identical ¿N are aligned
in a North/South con¯guration when they cross the CM on Carrington ro-
tation N . By using ¿N as the longitude-like variable to de¯ne position on
the solar surface, we avoid the smearing e®ect and can include observations
from more than one Carrington rotation so that we can carry out time series
analyses restricted only by the lifetimes of features.

It is possible to treat the Carrington time as a combination of Carrington
rotation number N and a longitude o®set angle. The resulting chart has a
form identical to that of a traditional synoptic chart. Although the abscissa
has units of longitude angle, it is not a true longitude in that pairs of points
along lines of constant latitude are not separated by this angular di®erence
except on a latitude which rotates at the Carrington rate. We call a plot
of magnetic ¯elds made in this way a DRC synoptic chart and refer to the
longitude calculated this way as a Carrington-time equivalent longitude. It
is important to remember that a DRC synoptic chart never represents the
whole solar surface at a single time; time and space are intermingled in the
abscissa values. If a chart of the surface using true longitudes is required it
is necessary to select a mapping time and then distort the synoptic chart
in a manner that reverses the original di®erential rotation correction and
yields the longitude of each point. We call these redistorted plots \snapshot
heliograph maps". The following section gives the explicit transformations
for both summing quantities into a DRC synoptic chart and for recovering
snapshot heliographic maps from the charts.

One of our objectives is to apply time series analysis methods to the
prediction and interpolation of solar properties for times when a point is not
on the visible portion of the solar surface. As a ¯rst step in this direction,
the ¯nal section provides a simple extension of the methods introduced by
Shrauner and Scherrer (1994) for treating the e®ect of solar rotation on the
projections of vector quantities onto the line of sight.

2 Map Transformations

2.1 THE APPROACH

The correction for the e®ects of di®erential rotation involves the following
steps:



6

¿N= TN

B

¿N=N¿N=N+ 1 ¿N= tMap
¿N= tObs+1/2

¿N= tObs {1/2¿N= tObs

N+1 N N{1
L0 L

Figure 2 The observed heliographic longitudes as the grid of blue lines and the
Carrington times as the grid of black lines. It can be applied at the time of each
observation in which case the central meridian is labeled as ¿N = tObs and at the
time of mapping a synoptic chart back to heliographic coordinates in which case
the central meridian line is labeled as ¿N = tMap. The central meridian is shown
as the heavy green line near the map center. The boundaries of the portion of the
map representing the entire solar surface are also shown as a pair of heavy green
lines a distance of §180± from the central meridian. This ¯gure is intentionally not
centered on a Carrington longitude of 180± so that the edges of the surface do not
correspond to 0± to 360±. The nearest Carrington rotation boundaries and center
line are shown as the heavy blue lines. Note also the convention of plotting the
time as increasing from right to left. This is done so that the longitude projected
onto the sky increases from left to right when the images are plotted as seen. A
particular point on the image is shown as the dark red circle along with dark
red lines representing the appropriate latitude and longitude for the point. The
observed Carrington longitude for the point is marked on the bottom of the ¯gure
with the blue L. The Carrington time of the point is indicated on the top of the
¯gure as the black TN . After the di®erential rotation correction, the point is shifted
to the Carrington time equivalent longitude indicated by the light red circle.

Observation: Shift each observed point in space to a position in the ¯nal
chart where it remains ¯xed according to some di®erential
rotation law.

Summing: Carry out an appropriate time series analysis to derive quan-
tities of interest such as for example the correlation of mag-
netic ¯eld with viewing angle or a dense-pack ring diagram
analysis with helioseismic techniques (Haber et al. 2002;
Komm et al. 2004). These results are presented in the DRC
synoptic chart format.

Mapping: Distort the DRC chart back into a snapshot heliographic
map. This step is essentially the inverse of the ¯rst step.

We start the discussion of an implementation of the above steps by casting
the equations in terms of the Carrington time. As noted above, the Carring-
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ton longitude has the undesirable properties of running backwards relative
to time modulo 360± while the Carrington rotation number moves forward
in time. Consequently, a time-like variable cannot be composed out of the
Carrington longitude and the Carrington rotation number by adding L=360
to N . This property of the Carrington longitude makes it di±cult to present
simple formulae for the treatment of di®erential rotation. The use of the
Carrington time as an intermediary simpli¯es the exposition.

2.2 CARRINGTON TIME

As a convention for this paper we measure time in Carrington units which
are the real number of solar rotations at a ¯xed synodic rate of 27.2753 days
per rotation beginning at a zero time de¯ned by Carrington (1863) for which
Carrington rotation 1 commenced November 9, 1853. This convention applies
to both times of observation indicated by tObs as well as the de¯nition of the
longitude-like Carrington time ¿N . Our methods can be applied to observa-
tions spanning multiple Carrington rotations but in such applications it is
important to remember that for most latitudes ¿N§1 6= ¿N § 1. Charts and
maps prepared with our methods must always specify the Carrington rota-
tion number to which they apply; hence, we include N in the de¯nition of
¿N . When a point is on the CM, the time of observation, tObs is equal to ¿

N .
Since ¿N is a real number the integer Carrington rotation number must obey
N = b¿Nc where the lower bracket symbols denote the °oor function which
returns the largest integer N not greater than ¿N . Although, we mostly use
values of ¿N where N = b¿Nc, this is not a requirement and for some appli-
cations of time series analysis, it is necessary to include observations which
violate this equality. In that case it is important to treat these observations
according to the formalism below, since positions on successive rotations do
not line up at all latitudes.
The relationship between the CM longitude, LN0 , (in degrees) and the

Carrington time, ¿N , is1

LN0 = 360
± ¡N + 1¡ ¿N¢ : (1)

Using standard geometric relationships we can calculate the longitude of each
observed point LN

0
Obs where N

0 may di®er from N if the CM is on a di®erent
Carrington rotation. The longitude increases in the direction of rotation and

1 The CM is displaced from this location by a small amount due to the eccentricity
of the Earth's orbit. An easy way to understand this o®set is to imagine solarians
(dwellers on the surface of the Sun) observing the earth from an \observatory" on
the Sun rotating at a ¯xed Carrington rate. Synodic Carrington time would be
local mean time kept by the solarians if they adopted transits of the Earth as their
local midnight. A time lapse photograph of the Earth taken by the solarians with
a camera pointed in a constant direction relative to their observatory co-ordinates
and with exposures made at a ¯xed time on the basis of their local mean time
throughout the Earth's year would produce an analemma. We include this o®set in
calculating the actual location of the CM but do not include changes in this o®set
as part of the di®erential rotation correction. Formulae in the text omit this o®set
for clarity.
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the time of CM crossing becomes earlier than the time of observation as
the longitude becomes more positive. The angular separation between the
observed point and the central meridian ±LObs is then given by:

±LObs = L
N 0
Obs ¡ LN0 ¡ 360±(N 0 ¡N) : (2)

2.3 DIFFERENTIAL ROTATION CORRECTION

In order to treat di®erential rotation, we note that at latitude B the time
o®set in seconds relative to the time of CM crossing is ¡±LObs=−(B) where
longitude is measured in radians, − is in radians per second and a positive
time o®set applies to a CM crossing prior to the time of observation. This
o®set is converted to a fractional Carrington rotation through multiplication
with the Carrington rotation rate. The synodic rotation curve we use gives
magnetic stackplots with the minimum drift in time:

−(B) = 2:730¡ 0:4100£sin2(B) + 1:0216 sin4(B)¤¹rad=s : (3)

This rate is faster than the widely used Snodgrass (1983); Snodgrass and Ul-
rich (1990) rates which are based on cross-correlations of Doppler velocities
and magnetic features over intervals of one to three days. Our rate tracks the
longer lived features which are of interest over periods of one or more solar
rotations. The Carrington time for the point for each observation is the Car-
rington time at the CM of the observation (i.e. the time of the observation
in Carrington units) corrected by the time displacement of the point from
the CM crossing measured in Carrington rotations. For completeness we note
that the synodic Carrington rotation rate −Carr is 2:66622375 ¹rad=s (the
precision given here re°ects the conversion from sidereal to synodic units;
the Carrington rate is typically stated in sidereal units whereas our rate in
Equation (3) has been determined in synodic units). If we represent the lon-
gitude in degrees we can express the Carrington time referenced to rotation
N for this point when it is observed as:

¿NObs = tObs ¡
±LObs −Carr
360± −(B)

: (4)

Figure 2 illustrates this transformation. The blue grid represents the angular
position of points on the solar surface. For the sake of illustration we have
shown a sample point as the dark red circle. Lines of constant Carrington
time are shown in black.
Time series analysis can be carried out by incorporating data from a

number of observations each having a di®erent tObs. The resulting parameters
describing the solar surface apply to a grid of latitudes and Carrington times:
B; ¿N . We can apply the equivalent of Equation (1) to obtain a longitude-

like quantity ~L which would be the Carrington longitude if the Sun rotated
rigidly at the Carrington rate:

~LN = 360±
¡
N + 1¡ ¿N¢ (5)
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with the value of N being given as before from N = b¿Nc. Following the
de¯nition in the preceeding section, we refer to ~LN as the Carrington-time
equivalent longitude. Synoptic charts of the derived quantity (such as a simple

average) can then be plotted as a function of ~L and appear as a normal
synoptic chart but to distinguish these from the traditional synoptic charts,
we refer to them as the \di®erential rotation corrected synoptic charts" (DRC
charts). The DRC chart has points shifted further from the CM since they
rotate more slowly at higher latitudes and the progression of points across
the DRC chart is uniform at the Carrington rate. However, ~L cannot be used
to represent the longitude of a point at any speci¯ed time since the values of
L that go into the average are di®erent for each observation.
The ¯nal step in the process is to select a mapping time, tMap, and carry

out the reverse distortion so that the position of features on the solar surface
can be properly represented. The Carrington longitude of the CM is given
by:

LN0 = 360
± (N + 1¡ tMap) : (6)

with the value of N being given by the °oor function applied to tMap. The
longitude of any point on the solar surface can be considered as:

LMap = L
N
0 + ±LMap : (7)

We then consider all values of ±LMap between ¡180± and 180± and locate the
appropriate positions on the DRC charts that correspond to these points. We
are not required in this calculation to constrain LMap to the range 0

± to 360±
but for a ¯nal display will need to label the points with values within this
range using the modulo function. A rotation number similar to a Carrington
rotation number could be used to label the portions of the plot altered by
the modulo function following the layout illustrated in Figure 2. With ±LMap
in degrees, the Carrington time for each point on the snapshot map is found
from:

¿NMap = tMap ¡
±LMap −Carr
360± −(B)

: (8)

As before, the synoptic map longitude corresponding to this Carrington time
can be found and the value of the desired quantity calculated by interpolation
from the stored data. When displayed in this format, the abscissa is a true
longitude and not a Carrington-time equivalent longitude.

2.4 SAMPLE REDUCTIONS

We illustrate the three forms of charts and maps in Figure 3 which utilize
all available Mt. Wilson observations for Carrington rotation 1952. For the
traditional synoptic chart and the DRC synoptic chart, 464 observations are
included. For the snapshot heliographic map 513 observations are included.
The number is larger for the snapshot map because points on the edge come
from a larger time interval. Note that structure is much more visible in the
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lower two maps than in the traditional case. This is true even at high lat-
itude where features usually do not appear. The snapshot map retains the
visible structure but shows that the zones of dominant polarity become dis-
torted at the edges. Evidently, the larger scale structure rotates more like the
Carrington rate in contrast with the smaller scale features which follow the
di®erential rotation law found with smaller scale magnetic/Doppler struc-
tures and the di®erential rotation law found directly from the Doppler shift
velocities.

3 Rotation, Vectors and Time Dependence

We illustrate the use of the di®erential rotation correction approach by show-
ing its application to the study of magnetic ¯eld vector components. The
formulae here represent a simple extension of the method of Shrauner and
Scherrer (1994) and are a minimal way to include a time series analysis into
the representation of solar magnetic ¯eld evolution. Solar rotation causes
a stationary vector to have a variable line-of-sight projection. This permits
us to resolve the vector magnetic ¯eld into two components: one called the
zonal magnetic ¯eld that is perpendicular to the axis of rotation and the
other called the meridional magnetic ¯eld that is projected onto the plane of
the local longitude. Figures illustrating this decomposition have been given
previously (Ulrich et al. 2002; Ulrich and Boyden 2005). The zonal magnetic
¯eld is in an East{West direction while the meridional component is made
up of a part that is radial and another that is parallel to the solar surface and
in a North{South direction. The method we use cannot distinguish between
the two parts of the meridional ¯eld. By using more than a single rotation,
we can also take account of some time dependence. For each latitude B and
Carrington time ¿N we combine data from observations taken at times ti
and use these to ¯nd the magnetic ¯eld components at time t0 = ¿N . The
time dependence is then found as a function of the time di®erence:

¢ti = ti ¡ t0 : (9)

For observation i we use the observed CMA ±Li to resolve the slowly varying
part of the Sun's magnetic ¯eld B into meridional and zonal Bm and Bz
components by representing the line of sight component of the magnetic ¯eld
Bsi for each observation i as:

Bsi = cos(±Li)Bm + sin(±Li)Bz +¢ti cos(±Li) _Bm +¢ti sin(±Li) _Bz : (10)

We may de¯ne weighted sums as follows:

sb =
X
i

sin(±Li)Bsi = scBm + ssBz + sct _Bm + sst _Bz (11)

cb =
X
i

cos(±Li)Bsi = ccBm + scBz + cct _Bm + sct _Bz (12)

sbt =
X
i

¢ti sin(±Li)Bsi = sctBm + sstBz + sctt _Bm + sstt _Bz (13)
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cbt =
X
i

¢ti cos(±Li)Bsi = cctBm + sctBz + cctt _Bm + sctt _Bz (14)

where:

ss =
X
i

sin2(±Li) ; sst =
X
i

¢ti sin
2(±Li) ;

sstt =
X
i

¢t2i sin
2(±Li) (15)

sc =
X
i

sin(±Li) cos(±Li) ; sct =
X
i

¢ti sin(±Li) cos(±Li) ;

sctt =
X
i

¢t2i sin(±Li) cos(±Li) (16)

cc =
X
i

cos2(±Li) ; cct =
X
i

¢ti cos
2(±Li) ;

cctt =
X
i

¢t2i cos
2(±Li) : (17)

In terms of these de¯nitions, we may determine the average zonal and merid-
ional ¯elds by solving the system of equations (11) to (14). The values for
Bm and Bz at the time t0 = ¿N have ¢t = 0 so Bm and Bz are indepen-
dent of _Bm and _Bz. Surface maps of the magnetic ¯eld can then be provided
using the snapshot reconstruction. Use of a di®erent mapping time, t0, will
produce a di®erent result for the magnetic ¯elds. Field projections using the
method of Shrauner and Scherrer (1994) treat the underlying magnetic ¯eld
as static so that the resulting maps at di®erent times change only because
of the varying distortion. By including a minimal representation of the time
dependence using the above formulae, the e®ects of both time variability and
variable distortion are present in a series of such snapshot maps.

4 Conclusion

We have de¯ned a variable we term the \Carrington time" and recommend
its usage in the context of synoptic charts of solar features. This quantity
can either be used in time units or in equivalent angular units. In the latter
case, it is desirable to use an alternate symbol or clarify in some manner that
the coordinate is not a true longitude. We hope that the use of such labeling
will help prevent confusion as to the nature of quantities plotted in synoptic
charts. When applying solar data as boundary conditions or input to models,
the quantities used should always be taken from a snapshot or instantaneous
chart of the variable and not from a synoptic chart. When a synoptic chart
is prepared from multiple observations, smearing of features can be reduced
by di®erential rotation correction; and if this method is used, it is important
to make explicit which rotation law has been applied.
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Figure 3 The three forms of synoptic chart discussed in the text. The top ¯gure
is a traditional synoptic chart where each observation is added to the Carrington
longitude appropriate for its time of observation. We have included all available
observations for each point. The second ¯gure carries out the di®erential rotation
correction and plots the points according to their Carrington-time equivalent longi-
tude. The bottom ¯gure gives the snapshot map for the Carrington time of 1952.5
and so is centered on Carrington rotation 1952. This restriction is done to allow
easy comparison to the traditional map on top which follows the convention of
restricting the plot to just those longitudes which fall on CR 1952. Although the
abscissae for the three plots are all indicated as longitude, they are in fact each
di®erent. The top abscissa is the Carrington longitude, the center abscissa is the
Carrington time equivalent longitude, and the bottom abscissa is the heliographic
longitude at the Carrington time 1952.5.


