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Abstract
[bookmark: _Toc478219866]In 1918-19, the great Spanish Flu Pandemic infected 500 million people on Earth and killed 30-50 million [Taubenberger and Morens, 2006].  Lesser, though by no means insignificant pandemics occurred in 1957-58, 1968-69, and 2009-10.  While these pandemics represent the worst cases, seasonal influenza infects 5-20% of the US population and more than 200,000 people are hospitalized on an annual basis.  While the US military is more proactive in terms of distributing influenza vaccine than the general population, it still cannot avoid the impact of this constantly evolving disease.
Mechanistic models of disease transmission (sometimes called mathematical or disease-dynamic models) are now widely used to improve policy design and tactical response to emerging viral respiratory pathogens in many civilian domains. However, previous attempts to utilize these models within the US DoD have met with limited success.
A recently completed effort by these applicants demonstrated the utility of applying statistically robust mechanistic models of infectious disease to very high quality data. The US Armed Forces Health Surveillance Center (AFHSC) maintains the Defense Medical Surveillance System (DMSS) that includes the Reportable Medical Events System (RMES), and the Defense Medical Epidemiological Database (DMED); together, these provide a more complete picture of the health of US forces than exists for the general population.
The current proposal is a continuation of our previous effort and will provide a statistically robust set of models in a format that can be linked to the best available data in real-time. These two key features of statistical robustness and high quality data distinguish our effort from apparently similar efforts by other groups. We will deliver a prototype tool for the analysis of pandemic influenza-like-illness data from multiple US military populations based on the previously funded project and we will add additional mechanistic models to the tool so that it is also of use during non-pandemic years. Additionally, we will also outline a pathway for the operationalization of the tool. 
The model will be trained using data collected over the past decade and, to the extent possible, a demonstration real-time system will be setup using any/all relevant data streams.  The US military population will be modeled at the base level, as in the previous studies, but the following capabilities will be added: (1) case severity; (2) an age-specific component; (3) seasonal epidemic analysis; (4) existing immunity and vaccination; (5) OCONUS bases; and (6) the ability to model other directly transmissible pathogens, including SARS-like corona viruses, or a new strain of influenza, such as H5N1.
1.0 ScopE
1.1	Objective
This effort is based on prior work performed by Science Applications International Corporation (SAIC), and Predictive Science Inc. (PSI), for the National Center for Medical Intelligence (NCMI) with support from the Defense Threat Reduction Agency.  Based on this previous investigation (Riley et al., 2013), in which a model of pandemic influenza was successfully developed and validated using data from 2009, we propose to transition this approach into a prototype prognostic application (computer program) capable of delivering meaningful insight during pandemics and non-pandemic seasons.  Although the major focus is on the planning for, rapid assessment of, and response to a pandemic; the utility of the tool during non-pandemic years will be emphasized so that it will be in regular use and well-understood by a core group within the department of defense (DOD), even if the next pandemic does not occur for a several years.
A prototype version of the tool will be in in the form of a private R-package with a batch processing function that will produce standardized reports (in slide format). In addition, a graphical user interface will be delivered with which model sets can be run and key results interrogated.
Our prior project developed two distinct mechanistic models for the transmission of influenza in the US military population. This work will be refined by producing additional models to improve accuracy and to make the framework applicable to non-pandemic seasons -- primarily by including age effects and prior immunity explicitly. The objective is to produce a suite of alternate models that can be applied to the same data stream and set of analytical and visualization tools with which to compare the results.
While focusing primarily on validated streams such as DMSS, the proposed effort will also be designed so as to capture data from other sources as (e.g., social networks), as and when data from these sources are made available and are validated for US military populations.
Additionally, the proposed effort will allow the assessment of the benefits of different mitigation strategies, such as vaccination and quarantine, and, in particular, the benefits of acquiring various sources of data more rapidly.

1.2	Background
1.2.1 Pandemic influenza and mechanistic models
During periods of high incidence, such as during the 2009 influenza pandemic, military planners must consider the dynamics of this system (at least implicitly) in their deployment plans.  They need to know how many individuals are likely to become ill, how many severely ill and, crucially, how soon peaks of illness will occur in a local population once the epidemic has started.  When vaccine is available, military planners need to know the most efficient schedule for the deployment of vaccines in order to reduce the impact of the pandemic on the operational readiness of different units.
A mechanistic model of an infectious disease is different from other models because it contains a mathematical representation of the transmission process (e.g., the risk of being infected is proportional to the fraction of the population currently infectious).  Often these types of model are described as mathematical models or disease-dynamic models. Because the basic mechanism is described, if the correct parameters are known or can be estimated -- and the model captures key features of the population -- the model can have useful predictive value.  
 Figure 1 captures the main features of mechanistic models.  In the proposed work individuals are considered to be susceptible (S), infectious (I), or recovered (R).  The algorithms then use a variety of techniques to model the evolution of these individuals, allowing the computation of various transmission parameters, such as the basic reproductive number, R0 (Figure 1 (b)).  The model allows the computation of the number of infectious individuals as a function of time (Figure 1(c)), which can be compared statistically to the observed number of cases.
 One of the key discoveries recognized by early pioneers in the field was the relationship of R0 to the total number of the population that become infected (Figure 1(d)). In particular, while a 20% reduction in R0 in a disease for which R0 is initially 5.0 results in a reduction in the overall final proportion of infected of only 1.3% (arrow 1 in Figure 1(d)), the reduction is 19% when a disease for which R0=1.8 is reduced by 20%.  Because influenza typically lies in this range, there are potentially huge benefits to deploying even modest intervention strategies. This qualitative result underpins much of the theoretical work on the mitigation of influenza pandemics that informed national preparedness plans for moderate and severe pandemics [Wu et al., 2006; Halloran et al., 2008] prior to 2009. [image: ]
Figure 1.  Summary of main processes related to understanding the transmission of pandemic influenza. (a) The classic SIR compartmental model: individuals are classified as either susceptible, infectious or recovered (and presumed immune). (b) exponential growth of cases (c) Epidemic curve from an SIR model with basic reproductive number substantially greater than 1 (d) The relationship between the total number of individuals infected and R0. Arrows show the non-linear effect of a 20% reduction in transmission: at lower reproductive numbers, the same intervention is much more effective (e) The severity pyramid for infectious disease.

In light of the mild nature of the most recent pandemic for most age groups [Riley et al., 2011], it is worth clarifying the various ways that the severity of influenza infection is reported and how they relate to the underlying number of infectious individuals.  The so-called “severity pyramid” is shown in Figure 1(d). The base of the pyramid represents the number of infectious individuals, which is the primary group of people tracked in models.  However, only a fraction of those, the cases, are usually observed.  For the DMSS data available and proposed for study, these are the individuals that present themselves and are diagnosed at military clinics.  Of those, some small fraction will develop severe symptoms, such as influenza with pneumonia (ICD-9 code 487), and of those, an even smaller fraction will die.  Thus, the case fatality rate is defined as the number of deaths divided by the total number of cases and the infection fatality rate, and severe infection rate, respectively as the number of deaths and severe cases to the total number of infections.
 Although insight from mechanistic models (such as expected peak total incidence, duration of epidemic and cumulative attack rate) can be of great potential benefit to both civilian and military leaders, often, mechanistic models are too complex and not closely linked to high-quality data.  Thus, the model itself sometimes has little value independently of its developer (Figure 2A). [image: design_concept]
Figure 2. The interaction of modeling tools, data, and experts.  Broadly, arrows represent the flow of important information or opinion.  A)  the typical successful process of generating insight using modeling technology in non-military settings.  A close dialogue between topic expert and decision-maker is maintained.  In particular, the decision-maker describes to the expert the full spectrum of policies being considered.  The decision-maker makes high quality contemporaneous data available to the expert to be used in real-time to support analysis.   The expert can refine his or her tools after seeing the data.  This process cannot be adopted for military planning.  B) an alternate process to generate insight using modeling in which the model becomes the interface between military planner and topic expert.  Illustrative or historical data are used by experts to improve the model with constant feedback from military planners during the development.  When fully implemented and validated, the tool generates insight independent of the topic expert.

Therefore, often, decisions regarding the control of infectious disease are made in the absence of good evidence about the underlying transmission process.  Typically, when a policy option arises (e.g., whether to close schools to reduce transmission), expert individuals or organizations are asked to describe evidence pertinent to the options at hand and then a decision is made.  For infectious disease policy, influential evidence is often one of: historical comparison, expert opinion, or recent raw case data (or statistical summaries thereof). However, there are a growing number of high profile examples where evidence from mechanistic models of infectious disease has been influential [Riley et al., 2003; Riley and Ferguson, 2006; Riley, 2007; Wu et al., 2007; Lipsitch et al., 2009; Wu et al., 2009a; 2009b].
In proposing this work, we suggest that there exists a viable ongoing process by which models of influenza transmission could have substantial value, even during periods when it is not possible to share sensitive data with non-military subject matter experts (Figure 2B).  The work proposed here on the transmission dynamics of influenza could act as an exemplar study in two respects:  (1) transferring modeling knowledge and expertise from the civilian to the military domain; and (2) creating stand-alone infectious disease tools.

1.2.2 Infectious disease policy within the Department of Defense
The US Armed Forces Health Surveillance Center (AFHSC) is responsible for monitoring US Forces health world-wide; the Infectious Disease Division of the National Center for Medical Intelligence is responsible for providing guidance on pathogenic agents worldwide to US DOD and civilian policy makers.  During significant infectious disease events such as influenza pandemic [Wu et al., 2009a] or the emergence of a novel respiratory virus [Riley, 2003] these organizations are tasked to provide advice by departments across the US government.  Improvement in the ability to estimate fundamental properties of novel pathogens (from contemporaneous case data in the military population and other sources) and to be able to provide those findings rapidly to its civilian counterparts such as the Centers for Disease Control would therefore represent a major advance for the DOD.  The first virologically-confirmed cases of the 2009 influenza pandemic – anywhere in the world – were detected by Navy laboratories from military dependents in California and Texas [Centers for Disease Control and CDC, 2009a].  If the DOD is able to expand fundamental epidemiological research already being conducted within the military during outbreaks (e.g., [Centers for Disease Control and CDC, 2009b; Eick et al., 2009]), then it will provide a valuable service to the global community of infectious disease public health professionals.
 Modeling the transmission of infectious diseases within large structured military, as opposed to the civilian, populations, provides unique simplifications that should increase the likelihood of successful transference of expertise (i.e. the type of tools proposed here will work better in the military than the civilian domain).  For example, data with which to describe the population structure is likely to be more precise and individual movement dynamics more accurate.  Also, the effects of policy decisions can be better estimated within a military environment; while the degree of adherence to voluntary household quarantine during a severe influenza pandemic [Wu et al., 2006] is difficult to anticipate; unit-based quarantine within military populations is regularly enforced with high compliance.  Thus, the population structure and behavior are more homogeneous and the data better.
For infectious disease models to generate real value, it is not sufficient that they can be applied to the data and that they are fully understood by those operating them.  For models to generate real value, they must also be structured so as to generate evidence that directly supports or refutes hypotheses that are relevant for policy.  Examples of useful hypotheses that have been addressed by our team in the past include: household-level quarantine would reduce the attack rate during a moderate or severe influenza pandemic [Wu et al., 2006]; dose-sparing strategies should be used if there is not enough vaccine for everyone during a severe pandemic [Riley et al., 2007]; when large amounts of antivirals are deployed early in a severe pandemic more than one type of antiviral should be used so as to reduce the likelihood of generating a dominant resistant strain [Wu et al., 2009a].  Throughout the effort proposed here, we will ensure our models are relevant to specific hypotheses of value to DOD consumers of DTRA sponsored tools. Our specific hypothesis of interest at the end of our first project was that early case data from US military populations can be used to characterize the individual and population-level severity of a novel strain of influenza (Figure 3).
This proposal presents a comprehensive program to produce a prognostic prototype tool that can provide insight into military epidemiological data.  Previously, we demonstrated the intrinsic value of the DMSS data for providing a wealth of useful descriptive statistical information, and used a parsimonious SIR model to under the basic transmission dynamics of the military population at the base level [Riley et al., 2013a; 2013b]. In this proposed effort, we will refine the models further, produce a running prototype toolkit, capable of forecasting outbreaks at military installations based on detection at early infected locations, and develop a plan to fully operationalize the toolkit.

Key parameters of infectious disease dynamics
The science of implementing and using a mechanistic model of an infectious disease requires understanding the basic properties of transmission, such as the basic reproductive number, the generation time and the individual-level severity of infection.
The basic reproductive number R0 quantifies the transmissibility of an infectious disease agent and is the average number of new infections generated by one typically infectious individual in an otherwise susceptible population.  R0 quantifies the proportion of infections that must be interrupted to control an outbreak.  For R0>10 (as is likely the case for measles), at least 90% of infections must be averted to avoid an epidemic.  In contrast, for R0<2, which is likely the case for H1N1 influenza in civilian populations, only 50% of infections must be averted for there not to be a large outbreak (Figure 3).
Although R0 is sometimes considered to be a universal parameter of a pathogen, the effective transmission rates for influenza and many other diseases will vary within and among different populations as the result of environmental, cultural, or genetic factors.  For example, the basic reproductive number for the 2009 influenza pandemic is different in the general community than in schools.  Given the homogeneity in age and close living conditions in the military, we expect R0 to be different in a large structured military population than in the general population, and also different between units of different types.  All other factors equal, we would expect higher values in the military.High
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Figure 3. Conceptual two-dimensional classification of pandemics in terms of basic reproductive number (R0) and infection fatality rate (IFR).

It is now realized, however, that R0, alone does not adequately classify pandemics. Some measure of severity must be simultaneously be considered, giving rise to a two-dimensional classification (Figure 3). Framed this way, the phase space can be broken into four distinct quadrants. Considering first the lower-right quadrant, pandemics that are severe (high IFR) but have a low R0 are the most amenable to effective intervention strategies.  As Figure 2(d) demonstrated, modest reductions in R0 can have a significant impact on the total number of people who become infected, and because these infections are likely to be severe, the health consequences are significant. At the other extreme, the upper left quadrant summarizes what is effectively the complementary scenario: low severity with high R0. Mitigation strategies (e.g., quarantine) aimed at reducing R0 will only have a small effect, and since the outbreak is mild, the costs of such an intervention must be balanced against what modest benefits might be obtained. In all likelihood, this scenario may require little, to no reaction. In the lower left, interventions will have a substantial effect on the transmission of the virus, but the benefits will again be small. Finally, and, perhaps the most difficult to act on from a policy perspective are outbreaks for which R0 and IFR is high. On one hand, even stringent interventions may yield little- to no-substantial reduction in the numbers of infected individuals. On the other hand, if the outbreak is very severe, doesn’t this justify doing something? In this case, a “wait and see” approach may initially be the pragmatic position to take. There is tentative evidence that during the first few days of the 2009 pandemic R0 was significantly higher than it was later estimated. It has been suggested that the widespread media dissemination of the outbreak led to sufficient behavior modification that the effective R0 dropped substantially. Thus, it may be that in cases where IFR is high, R0 could be monitored for signs of reduction to a point at which a comprehensive intervention plan may be effective.
To illustrate how mechanistic models and high quality data can be used to rapidly place an emergent virus into this framework, we have computed a two-dimensional R0/Severity quad-chart for the 2009 pandemic using model fits (see below) for the top 20 bases (Figure 4) from 2009. For all but two locations, the points are closely clustered in the lower left quadrant, suggesting (as turned out to be the case) that little, if any intervention was warranted. By building up diagrams like this for different bases and for both pandemic and seasonal epidemic years, we can create baseline intuition with which to compare data from future outbreaks. When the next pandemic strain appears, as it progresses from one base to another, we can add points and quickly assess where, in this parameter space, the new cases fall. This is an example of the standard report output that we propose to deliver as actionable and timely actionable information for DOD decision makers. [image: ]
Figure 4. Relationship between basic reproductive number and severe infection rate for top 20 bases during the 2009 influenza pandemic.

In addition to knowledge of the overall transmissibility, knowledge of the breakdown of transmission by route of infection is useful.  For example, during hospital outbreaks of SARS in 2003, analysis has shown that infections spread more often from staff to staff and less often from a known super-spreader to staff than was initially thought [Kwok et al., 2007].  Knowledge of the relative importance of different transmission routes would have been valuable at that time.
 During an outbreak of a novel infectious disease in a highly structured military population, a key dimension of transmission would be the degree of between-unit transmission compared to within-unit transmission.  Our proposed solution will estimate the relative importance of these alternate routes of infection directly from the supplied data: the timing of new infections in different units in the same base contains this information. A further, important consideration is age structure. Although the military population is more narrowly confined in age, and, for influenza, we would not have to consider the movement of individuals through age classes, there are two specific issues that should be addressed. First, there are notable variations in the severity of the 2009 pandemic with age [Riley et al., 2013a]. And second, military personnel often, although not always live with their families. 
A second key parameter is the generation time, Tg, or the mean time interval between infection of one person and infection of the people that individual infects [Fraser et al., 2004].  When combined with R0, Tg defines the timescale for epidemic growth, and thus, determines how fast intervention measures must be successfully implemented to avoid a substantial outbreak.  In particular, it can be shown that the doubling time for the number of cases in an outbreak is ~Tg/( R0-1) for many pathogens [Anderson and May, 1992].  We will use accurate incidence data and recent advances in statistical methods to estimate both the generation time and the basic reproductive number [White et al., 2009].
A further key parameter for understanding the spread and impact of infectious diseases is severity, which can be defined in a number of ways depending on the specific application. Within the clinical environment, the case fatality rate (CFR) is often used (See Figure 1(e)). This is defined as the ratio of deaths within a designated population of cases over the course of the disease. During the 2009 pandemic, for example, which was notably less severe than previous pandemic strains, the case fatality rate was estimated to be 0.026%. For comparison, the rate for the 1957-1958 pandemic was 0.2%.  During the 1918 pandemic it has been estimated to be 2-3% [Donaldson et al., 2008]. Thus, during the last three major influenza pandemics, this measure of severity has ranged over two orders of magnitude. 
 As an illustrative scenario, consider the following. If the next novel respiratory pathogen to cause local epidemics in US military populations is of moderate or severe severity, it will induce both prescribed and reactive changes in behavior. Lessons will need to be learned from early affected bases so as to optimize planning for, and responding to, later local epidemics. For example, if the pathogen is genuinely novel to the first affected base, we would expect a non-specific reactive reduction in transmission within that population over the coarse of the outbreak, in addition to specific reductions on the implementation of quarantine-like measures. The tool we will develop in this project will allow estimation of the efficacy of both reactive and prescriptive changes in transmission for individual bases. Projections for not-yet-affected bases would be informed by these estimates. This scenario forms the basis of the proposed screen shots given in Figure 9. 
Previous use of mechanistic models within the Department of Defense
A number of software packages aimed at simulating outbreaks of infectious diseases have been commissioned in the past, with varying degrees of success [Brian H Feighner, 2009; Feighner et al., 2010; Marathe et al., 2011]. Our proposed prototype tool may be distinguished from these in two key aspects. Firstly, the relationship between the model output and the best available data is evident at all times. Currently, those data are the DMSS clinical episode data from which influenza-like-illness can be extracted [Nicola Marsden-Haug, 2007]. Model output will continue to be presented only alongside observed data, with challenging parameters estimated from the data (such as the proportion of infections that result in a clinical case). We present out the uncertainty of model results whenever possible. The second key difference between our approach and previous modeling effort is that we do not intend to deliver a single model. We will maintain different mechanistic models that can be used to explain the data. For example, when we include age effects explicitly in the next phase of our work; we will be able to present the age-specific model alongside the age-specific data and also present the non-age-structured model results alongside the same data. Therefore, the additional value from increased model complexity will be evident and there is little danger that the mechanisms we include in the models will be over specified, relative to the data.
  Modules will be provided that allow the user to test the effects of installation-specific mitigation strategies, which, because of the unique demographic properties of US military bases. By completion of this work, we anticipate delivering a prototype tool at TRL 6, having developed a fully validated algorithm that will require only technological transfer to be capable of being “plugged in” to JSTO products.

1.4	Previous Work 
The work proposed here is based on a recently completed 16-month study to understand the fundamental properties of influenza transmission at military installations during the 2009 pandemic [Riley et al., 2013a; 2013b]. Here, we summarize a few main points. 
Before choosing an appropriate model to analyze the data, we first assessed the properties of the pandemic at each of 300 CONUS installations. Focusing on the top-50 for which the statistics were better, we identified several key properties. For example, comparisons of the incidence rates at the bases with the surrounding ambient civilian population (derived from both published and unpublished county-level data) clearly showed that the outbreaks were quasi-synchronous. In fact, phasing analysis showed that the civilian population was probably driving the military installations because the peaks tended to follow by approximately one week (Figure 5). This suggested that the most appropriate model as at the level of an installation. 
After the start of an outbreak, transmissibility can change for a number of reasons (cf., Figure 1).  For example, within civilian populations, R0 typically decreases when schools close for the winter break. Therefore, we define a variant of the R0 parameter for downstream transmissibility. Rt is defined as the average number of secondary infections generated by one typically infectious individual during an ongoing epidemic.  If the intrinsic properties of the pathogen and the behavior of the population remain constant, then the most significant factor to affect Rt is the depletion of susceptible individuals.  However, once an outbreak is detected and measures are put in place to reduce transmissibility, Rt may be much lower than R0, even when many susceptible individuals are still present in the population. Using this basic approach, we were able to successfully model the transmission dynamics for the top-50 CONUS military installations. [image: ]
Figure 5.  Synchronization between civilian and military populations. Panels (a) through (d) summarize incidence profiles at 4 different bases and compare these results with available county-level (or, in the case of (d), national) civilian data. (e) Summarizes a statistical analysis for all bases for which reliable county level could be retrieved. The dashed line marks a slope of one, while the solid black line is a best-fit to the results. 

Figure 6 compares observed incidence rates for eight of these bases with model results. While there may have been several underlying physical mechanisms for R0 changing (arrival of new troops, troop deployment, on-base school closures or openings, etc.) it is remarkable that such a simple model can reproduce all profiles with such high fidelity. 
In our most recent model refinement, we added the proportion of clinical cases, pC, to the analysis. This required knowledge of the total number of active duty personnel at each installation; a parameter that while well known within the military is also likely to be sensitive. By comparing the web-published number of active duty personnel on well-defined installations with the total number of clinical visits (for all reasons) we were able to derive a rough estimate for such “denominator” information (Figure 7). This represents perhaps the largest source of error in our analysis, yet: (1) the results derived even with this approximation are reliable and robust; and (2) this is a “known unknown.” Thus, in the hands of military users, the largest uncertainty within the model can be quickly rectified. Phrased another way, our published results represent the least accurate scenario and be suggest that the same technology used with precise population size data would be substantially more accurate.
As a final example illustrating both the wealth of data that can be extracted from the DMSS data as well as the successful application of models, in Figure 8 we show the temporal change in R0 during the pandemic. Somewhat counter-intuitively, we found that R0 tended to increase modestly from the beginning (April 2009) to the end (November 2009) of the pandemic. Without more detailed analysis, we would only be able to speculate on the underlying process that caused this increase. However, an important aspect of the proposed work is that the prototype tool we will develop will be able to estimate R0 in near-real time as data from each of the installations is ingested into the model. This will provide crucial information about any intrinsic evolution of the transmission of the virus as well as near-instant feedback on the efficacy of any implemented intervention procedures. [image: ]
Figure 6. A selection of incidence profiles from eight CONUS military bases during the 2009 influenza pandemic. Red lines are data extracted from the DMSS data stream. Blue lines are the best model fits from the 6-parameter base-level model developed during our previous contract and the green lines shows the model's estimated changes in transmissibility.

[image: ]
Figure 7. N-proxy represents our best estimate for the population at each base as determined by all out-patient visits to those DMISIDs within a particular MPZ. N-web is our best estimate for the number of active duty personnel at each base. 

1.4	Programmatics
Benefit to DOD.
 The proposed topic will support DTRA’s Diagnostics, Detection, and Disease Surveillance Division and the topic “Data, Algorithm, and Analytic Capability Development for Threat Surveillance CBA-DAACDTS” in being able to “predict the likelihood of an outbreak, forecast the associated epi curves and impacts of interventions, and update forecast based on field (and simulated) data.”  
 Other agencies will also benefit from the proposed program.  Based on presentations and discussions with AFHSC, we anticipate that the proposed prototype tool will be of high intrinsic value both as a retrospective tool and forecasting tool, driven by DMSS data.  Additionally, our model addresses NCMI’s core mission to monitor and analyze health events that could negatively impact the health of U.S. military populations. Ultimately, the tool may provide actionable information at the level of a base commander during specific outbreaks. In recent discussions, members from the Office of the Secretary of Defense (OSD) have indicated that they would be interested in the outcome(s) of the proposed effort.  Finally, although our primary focus rests with military personnel, because of the close relationship between the two populations, we are planning to incorporate civilian-driven datasets into our analysis.  Thus, we anticipate that agencies such as the Department of Health and Human Services (DHHS), and, in particular, the Biomedical Advanced Research and Development Authority (BARDA) will find value in the proposed tool.  We received positive feedback during a  talk given to a group at BARDA in January 2013 on this topic. 

[image: ]
Figure 8. Relationship between R0 and the model-determined time of initial infection, T0. A linear regression to all fits (left) shows a modest increase in R0 from the early summer to late fall. When the outliers (that is, R0>2.0) are removed from the analysis, the general rise in R0 still persists. Moreover, when only the top 30 bases are included in the analysis (red points), the trend persists.

Management Plan.
The proposed effort is a collaboration between SAIC, Predictive Science, San Diego, and Imperial College, London.  SAIC will provide the overall program management and will take the lead in developing the operationalization plan.  The Program Manager, Dr. David Bacon, has a history of supporting DTRA and its predecessor organizations going back nearly 40 years. Predictive Science will provide the technical lead for the three main proposed tasks, and will be assisted by Dr. Bacon’s team in the final delivery of the prototype tool.  Dr. Pete Riley has successfully managed a number of DOD and NASA programs over the last decade.  The present team recently completed a successful program on a related topic for DTRA/NCMI. 
The proposed program is a balance between (1) toolkit development, testing, and delivery, (2) model refinement, validation, and verification, and (3) exploration of important scientific issues relevant to the DTRA’s strategic objectives.  

1.5	Relevance
 Given both the seasonal impact of influenza on troop readiness and performance as well as the potential for the US military to be impacted by pandemic influenza, the proposed program represents a major advance for the DoD.


2.0 Credentials
2.1	Summary
The three organizations represented in this proposal all participated in the previous project “Near Real-Time Forecasting Influenza Dynamics” sponsored by DTRA for NCMI, which has met all milestones and deliverables during the past 16-months.  In the sections below, we provide a brief summary of the qualifications and experience of each of the key personnel. 

2.2	Summary of Qualifications for PI and Key Personnel
The Program Manager for the proposed effort will be Dr. David Bacon who has supported the Defense Threat Reduction Agency and its predecessor agencies going back to the late 1970s.  The effort at Predictive Science will be led by Dr. Pete Riley, who was the technical lead for the previous DTRA project. He has extensive experience leading DOD and NASA programs in a range of fields from basic plasma research to infectious diseases.  Dr. Steven Riley, at Imperial College, London, is a world-renowned expert in the field of mathematical epidemiology, and particularly in modeling directly transmissible pathogens, including influenza and SARS. Capsule resumes for these individuals are provided below.
Dr. David Bacon, is the Director of the SAIC Center for Atmospheric Physics.  For over 30 years, Dr. Bacon has supported the US Department of Defense in the areas of nuclear weapon effects, including nuclear cloud dynamics, thermodynamics, and microphysics, the transport of toxic inhalation hazards in the atmosphere, and, for the past 16 months, has been the Program Manager for the Near Real-Time Influenza Dynamics effort and supported NCMI by creating a tool to automatically perform genetic sequence comparison and track mutation rates in influenza under the Endemic and Emerging Infectious Disease program.  He has conducted pulsed power simulations of nuclear weapons environments at the US Naval Research Laboratory, Sandia Laboratories, and the Harry Diamond Laboratory.  He developed the nuclear cloud version of the Terminal Area Simulation System (TASS) used in creating the Single Burst Nuclear Cloud Database used in fratricide deconfliction studies for the Single Integrated Operations Plan (SIOP).  Dr. Bacon first proposed the creation of a multi-scale meteorological model with built-in aerosol transport in 1984 and continued to champion the multi-scale model concept for nearly a decade.  In 1991, Dr. Bacon started developing OMEGA, a multi-scale atmospheric simulation model based upon an unstructured grid.  In addition to its use for real-time response, OMEGA is the kernel for the Chemical Hazard Area Modeling Program (CHAMP), a Program of Record of the Defense Intelligence Agency (DIA).  OMEGA / CHAMP was used by the National Center for Medical Intelligence (NCMI) in the creation of daily products related to the potential transport of released radiation from the Fukushima nuclear power plant.  Dr. Bacon is also an Affiliated Professor with the Department of Atmospheric, Oceanic, and Earth Sciences of George Mason University.

Dr. Pete Riley of PSI will manage the overall technical objectives of the proposed work.  He has more than 20 years research experience both in the analysis of complex datasets and the development and implementation of massively parallel computational algorithms.  He was the technical lead for the program “Near Real-Time Influenza Dynamics” for NCMI with support from DTRA. He has also led a number of NASA, DOD (DTRA, Air Force, NRL), and NSF efforts involving mathematical modeling and high performance computing and has developed and delivered real-time algorithms to NOAA.  Currently, he is an Institutional PI for an NSF-funded multi-institutional interdisciplinary program studying the physics of extreme space weather events and chairs a workshop steering committee on a related topic. He is an instrument team member for several NASA spacecraft missions and serves, or has served on a number of NASA and NSF working groups and steering committees. Dr. Riley’s current research focuses primarily on analysis and modeling of complex systems ranging from solar physics to infectious diseases. 


Dr. Steven Riley of Imperial College, London, is a Reader in the Ecology and Epidemiology of Infectious Disease and will provide unique insight into the best approaches for developing the influenza framework for understanding dynamics within military populations.  He will also work with the team to develop the prototype toolkit. Dr. Steven Riley is a critical element of the proposed effort.  After receiving his D. Phil in 2002, Dr. Riley completed a postdoctoral research fellowship at Imperial College, London in the Dept. of Infectious Disease Epidemiology.  He then went to Hong Kong where, from 2004 through 2010, he was an Assistant Professor at the University of Hong Kong in the School of Public Health and Department of Community Medicine.  During this period Steven helped to build a strong infectious disease dynamics group and has published key articles providing evidence to improve infectious disease control policy in journals such as Science [Riley, 2003; 2007], Nature [Ferguson et al., 2005; Vijaykrishna et al., 2011], PNAS [Fraser et al., 2004; Riley and Ferguson, 2006; Riley, 2010] and PLoS Medicine [Wu et al., 2006; Riley et al., 2007; Riley, 2008; Riley et al., 2008; Presanis et al., 2009; Wu et al., 2009a; Riley et al., 2011].  Currently, Dr. Riley is a Reader of Infectious Disease Ecology and Epidemiology in the MRC Centre for Outbreak Analysis and Modelling at Imperial College, London, considered by many to be the world's leading group for the development and implementation of models of infectious disease transmission.  Also, Steven is an Investigator with the Research and Policy in Infectious Disease Dynamics (RAPIDD) program (a jointly funded imitative of the U.S. National Institutes of Health and the U. S. Department of Homeland Security).  Dr. Riley is also a member of the World Health Organization Mathematical Modeling Network for Pandemic Human Influenza A (H1N1) and a member of the Scientific Committee for Advanced Data Analysis and Disease Modeling, Centre for Health Protection, Hong Kong.

2.3	Summary of Facilities to Perform the Proposed Work
SAIC has a history of supporting DTRA (and its predecessor agencies), dating back over 40 years.  In particular, Dr. Bacon’s history with DTRA spans over 3 decades.

 SAIC Center for Atmospheric Physics
The Center for Atmospheric Physics (CAP) is located at the McLean, VA Campus of SAIC and is comprised of experts in atmospheric physics, including cloud scale and mesoscale dynamics, thermodynamics, and microphysics, cumulus parameterization, planetary boundary processes, and mathematics and numerical analysis.  The CAP mission is to provide high fidelity, high resolution weather and dispersion forecasts, and forensic analyses of past meteorological events to our clients.  The primary tool used to support this mission is OMEGA, developed over the past 20 years with an emphasis in boundary layer physics, atmospheric dispersion, and real-time operations.  OMEGA has been used for numerous real-time forecast problems, for treaty monitoring and compliance, for hurricane track forecasting, and a modified version has even been used in an exploratory look at forecasting Martian dust storms.  For NCMI, SAIC built the CHAMP system, based on OMEGA.
Center customers over the years include DNA, DSWA, and the Nuclear Treaty Program Office (all now DTRA), DARPA, NASA, and NCMI.  In addition, the Center has supported Consequence Assessment and Emergency Management missions in the US and overseas.[image: ]
Table 1.  The overall program represents a balance between model development, delivery of a prototype tool, and planning for an operational tool.


Predictive Science Inc.
Predictive Science Inc. is an employee-owned company that delivers state-of-the-art scientific solutions to our customers. We strive to provide exceptional and creative solutions that can be tested against real-world observations and experiments, within a working environment that rewards and encourages professional excellence and ethical entrepreneurial activities.  Our customers include NASA, DTRA, NCMI, NSF, AFOSR, NRL, UC Berkeley, Stanford University, Boston University, Lockheed Martin, and SAIC. Our research spans from basic plasma physics to applied epidemiological modeling. Our expertise lies in the development of sophisticated numerical models, which run on the largest supercomputers available, to sophisticated data analysis of a wide variety of measurements. More information about PSI can be found at: www.predsci.com.

3.0 Work to Be Performed
3.1	General
Task 1.  Project plan and Kick-Off Meeting
To maximize, and more narrowly tailor this investigation, we will meet with DTRA personal at the start of the project, where we will present our objectives and milestones and solicit feedback, modifying them as appropriate.
Task 2.  Develop and Deliver Prognostic Prototype Model
In our previous effort, we developed two alternate models of the DMSS ILI data: a single peak three parameter model and a ‘twin peaks’ six parameter model. In other tasks outlined below, we will develop and validate additional models. In this task, we will ensure that the functionality of both existing and future models can be made available to users within the DOD. 
Based on our successful previous study, we have identified several key refinements that should be made to fully exploit the rich information contained within the DMSS data. In particular, we propose to include case severity, age-specific effects, the analysis of seasonal epidemics, which, in turn, relies on a detailed consideration of pre-existing immunity and vaccination procedure, and a more detailed analysis of OCONUS bases.
While the bulk of our effort will focus on seasonal and pandemic influenza, from a forecasting perspective, the ability to apply these types of models to new, novel pathogens in near-real-time is undoubtedly an important goal from a policy making perspective. We propose to undertake several “what if” experiments using hypothetical pathogens with dynamic properties that could, in principle, arise. For example, what would be the likely effects of a SARS outbreak among military personnel with, and without the types of mitigation strategies employed during the actual 2003 outbreak in Hong Kong? 
Task 3. Develop plan to operationalize prototype tool
The proposed work will deliver a working prototype tool; however, to fully capitalize on its value, we will develop a plan to operationalize, which will be based on assessing current technologies, discussion with DOD personnel. The results of this investigation will be communicated in the final report. 
Task 4.  Project Reporting and Meetings
We will provide monthly reports and meet face-to-face with DTRA personnel three times during the one-year period of performance.
3.2	Summary
The tasks listed above are inter-related and hence must be staged appropriately.  The following break-out by tasks shows the staging.  The convention on task numbers is:
<Task Number>.<Sub-Task>.
Task 1: Project plan and Kick-Off Meeting
Task 2: Develop and Deliver Prognostic Prototype Model
Task 2.1 – Migrate all existing source code to a fully documented R package
Task 2.2 – Add additional functionality to the R package so as to produce batched report output in slide format.
Task 2.3 – Delivery of prototype tool as a cloud-based web interface.
Task 2.4 – Completion of analysis incorporating case severity
Task 2.5 – Addition of age-structuring into the model
Task 2.6 – Analysis of seasonal epidemics, including immunity and vaccination
Task 2.7 – Analysis and interpretation of incidence profiles from OCONUS bases
Task 2.8 – Generalize to other novel pathogens
Task 3: Develop plan to operationalize prototype tool 
Task 3.1 – Investigate existing technologies
Task 3.2 – Conduct discussions with likely DOD users 
Task 3.3 – Develop detailed plan for operationalizing the tool. 
Task 4: Project reporting and Meetings
3.3	Detailed Tasks
Task 1
SAIC and PSI will develop a Project Plan due NLT 21 days after contract award and support a Kick-Off meeting with the government to be held within 30 days of contract award.
Task 2
We will deliver the analytical functionality using the following development pathway. First, we will switch all analysis into a private R package (www.r-project.org) and provide standardized documentation for all public functions. Second, we will add additional functions to the R package that will generate standardized reports, in slide format, based on the analytical functionality. Finally, for key analytical functions, we will provide preliminary a web-based remote GUI by: adding an object layer to the existing R code, wrapping those objects in the JavaScript Object Notation (www.json.org) using the rjson package (http://cran.r-project.org/web/packages/rjson/). This development pathway is consistent with other efforts to provide GUI access to disease-dynamic models, such as the Public Library of Models (www.plom.io). Figure 9 illustrates some of the proposed output from the prototype tool. This would be of value to an experienced user and would be displayed through the web GUI interface. We will design all output and interactive applications to be accessible to (as a maximum level of expertise) a Masters of Public Health with some knowledge of infectious disease epidemiology.[image: ]
Figure 9. Simulation of the 2009 pandemic showing the predicted incidence curves at the top-50 military installations at (top) day 4, (middle) day 32, and (bottom) day 55. The drop in R(t) at day 34 simulates some intervention strategy, say, quarantine, of unknown effectiveness, and the model estimates its efficacy, re-computing the predicted outbreaks at subsequent bases.

The panels show the forecasted realizations for a hypothetical pandemic at the top-50 military installations based on fits to the available data at day 4, 32, and 55. Additionally, the effects of a simulated but unknown mitigation strategy (e.g., quarantine) at day 34 are correctly captured and the forecasted reduction in the number of cases is shown. In principle, this type of tool has the capability of estimating in near-real time, the efficacy of some intervention, providing policy makers with crucial, timely feedback on their implemented plans. 

 Task 2.1.  Completion of Prototype Module
During our previous investigation, we developed a series of both stochastic and deterministic models.  The computational engine underlying them was a collection of FORTRAN libraries, which are directly called from an R routine.  This significantly enhances the numerical efficiency of our models and allows us to properly sample the multi-dimensional parameter space from which the transmission estimates are recovered. To meet the goals of the proposed work, we would exploit three main computational concepts: (1) R-Packages; (2) The Public Library of Models (PLoM); and (3) Java Script Object Notation (JSON). 
R-Packages: An important goal of the proposed work would be to deliver self-contained computationally efficient R-package that could be used to model and predict time series of incidence rate(s).  This package would only require the user to have the publicly available R-software and the standard GNU complier, and would enable the user to run different models (e.g., retrospective/predictive, pandemic/epidemic), methods (e.g., stochastic/deterministic), and input data (DMSS, Google Flu Trends, Twitter). In practice, for the first-year deliverable, we would focus on the models and methodology described under Task 2, and optimize them for DMSS data. However, by building in generality at the outset, we believe the framework will enjoy both a longer lifetime and, eventually, greater contribution from the scientific community. 
Public Library of Models: We would also make our library of prototype models available to the general epidemiological community by depositing the package with the PLoM (Public Library of Models) project (www.plom.io).  The PLoM project is a nascent, but promising effort to share epidemiological models using a layered model in which the user first defines the model and then applies it to a context, which, for our purposes, would be a time series of incidence rates.  Our codes use this same logic, and our models could be applied to other contexts. In conjunction with the development of R-Packages, delivery to PLoM represents a threshold milestone and measure of success. It also makes the toolkit available to other researchers for validation, verification, criticism, and refinement, all of which will ultimately improve the quality of the tool. 
Java Script Object Notation: Because the PloM project is language agnostic, it allows us to develop the models in any programming language, requiring only that the final object be exported as a JSON (Java Script Object Notation) document.  JSON, www.json.org, is a simple, lightweight data interchange language.  It is built on only two universal data structures, which virtually all modern programming languages support (name/value pairs and arrays), and enables data interchange between numerous programming languages (e.g. C, C++, Python and R). In our case, using the R rjsonio library we can export an R code as a JSON document and make it available on PloM.
Additionally, DTRA personnel may request delivery in a form to meet requirements for the BSV Ecosystem Technologies. If this is not met by any of the proposed formats above, we will refine our deliverables to meet those requirements at the Kick-off meeting. We are confident that once we are working within a well documented and regularly updated private R package, further development to fir within larger ecosystem architecture will be achievable without the need for substantial additional resource. 
Task 2.2.  Prototype Refinement
Once the prototype tool was complete, we would then incorporate the refined models into the package, as and when they become ready. We anticipate adding these refinements in the following order: severity (month 3); age structure (month 6); and seasonal epidemics (month 11).  
Task 2.3.  Delivery of prototype tool to DTRA-Approved Site
Our main deliverable, and measure of success for this proposed effort will be the delivery of the prototype tool to an agreed-upon site for testing by DOD personnel. Based on our previous, and current positive collaborations with AFHSC personnel, we suggest that this may be the most appropriate site; however, we realize that extrinsic factors may preclude this, and leave the final destination of the tool open, subject to a decision during our Kick-Off meeting, tentatively planned for August 1, 2013. 

Task 2.4.  Case Severity
Patient severity is a vital parameter to reliably estimate during an influenza pandemic, or, to a lesser extent seasonal epidemic. And to varying degrees, different estimates will be of value, depending on the specific circumstances. The director of an outpatient medical clinic, for example, would need to know how many patients are likely to visit the clinic in the ensuing weeks and prepare accordingly (case infection rate, CIR). A hospital director, on the other hand, would likely want to know the number of severely infected personnel (SIR, see Figure 1 (e)), and to a lesser extent, the case fatality rate. In contrast, a base commander would likely prefer a triaged summary of these results: What is the likely impact to the fighting capability of his troops? Our previous investigation included severity by estimating the total number of individuals that presented themselves to a military clinic. However, within the DMSS data, information also exists on the more severe cases of “influenza with pneumonia (ICD-9 Code: 478). These cases will allow the models to estimate the proportion of cases that are most severe.  

Task 2.5 Inclusion of Age-Specific effects
During our initial investigation, we neglected age structure effects in the model; the rationale being that active duty military personnel display considerably less variability in age, with almost half of the active duty force being between the ages 22 and 30. [Anon, 2013]. However, there are two important issues that necessitate age-structure analysis in our improved model. First, during our descriptive statistical analysis of the DMSS data, we found significant variations in severity during the 2009 pandemic in different age groups. Figure 10 shows the variation in severity index as a function of age, for example, comparing the 2009 pandemic with the following year’s seasonal epidemic. These results suggest a disproportionate number of younger people were affected both during the 2009 pandemic and the 2010-2011 season. [image: Screen Shot 2012-03-17 at 12.51.28 PM.png]
Figure 10. Severity index (the ratio of ICD-9 487 cases (influenza with pneumonia) to ILI-small as a function of age for the 2009 pandemic and the following year’s seasonal epidemic. 

A second vital component that age-structuring will add is the effect of dependents, and particularly children. Our initial analysis focused on understanding the dynamics within the bases. However, we found that there is a strong synchronicity between the ambient civilian population and on-base active duty personnel. Moreover, an important driver - at least during the early phases of an outbreak - in civilian populations are school-aged children. Although we believe their effects are diminished within the military environment, adding age structure to the model will allow us to incorporate this new element. Collaborators at AFHSC have indicated that a subset of data on military personnel dependents can be made available to validate the refined models.

Task 2.6 Analysis of Seasonal Epidemics
Knowledge and predictive capabilities of influenza pandemics are obviously of paramount importance. The novel virus spreads worldwide and infects a large proportion of a human population that likely has little immunity to it. Modeling pandemics is conceptually more straightforward because the lack of immunity or the availability of effective vaccines means that such factors do not need to be considered. However, successful modeling and prediction of seasonal epidemics can provide fundamental information that will lead to improved pandemic predictability. The available data is expanded from one season (2009) to more than a dozen (2000-2013) providing improved statistics and temporal information, and allowing us to address a number of questions of both basic science and policy-making importance. For example, how does the temporal relationship, severity, and basic reproductive number between outbreaks at different bases hold from one season to another? Answers to these would provide important probabilistic forecasting capabilities. 
To effectively study and eventually forecast seasonal epidemics requires a careful consideration of vaccination procedures and resulting immunities. These can be incorporated into our modeling framework in a relatively straightforward way by introducing a class of vaccinated individuals (V), for whom the vaccination has an efficacy of v%, providing immunity on a timescale of v. In fact, because the DMSS data spans more than a dozen years, a model that incorporates pulse vaccinations, that is, periodic repetitions of impulsive vaccinations into the population may be more appropriate. As illustrated in Figure 11, the DMSS data has all of the necessary data to allow us to extend the model to seasonal epidemics. [image: ]
Figure 11. (a) Number of ILI-small cases at all military installations; (b) Seasonal vaccinations; and (c) H1N1 vaccinations from January 2000 through January 2012. 


Task 2.7 Analysis and Interpretation of OCONUS Bases
During our previous studies, we uncovered some unique qualities of bases not situated in the contiguous USA. For example, as noted above, profiles for the Medical Center at Landstuhl, Germany, were not remotely synchronous with the ambient civilian German population, which lagged the military population. The decreased interaction between the two populations suggests that, in this and other remote locations, troop movements likely drove the outbreak. These installations provide a unique opportunity to explore the evolution of the pandemic without the forcing factor of the ambient community, yet not under the more intense conditions that occur onboard specific naval vessels.  Although the number of troops stationed at OCONUS installations represents only a small fraction of the total active duty military population, these sites can provide a unique insight into the transmission properties of the virus. Additionally, parameters estimated from them may be considerably more applicable and relevant should large-scale deployments be made in the future.
Task 2.8  Generalization to other Directly Transmissible Pathogens
In addition to investigating both pandemic and seasonal influenza, we will generalize the model to allow meaningful treatment of other directly-transmissible infectious pathogens, such as novel coronaviruses like SARS. We will also conduct “What if” scenario experiments using estimates from previous severe pandemics, such as  the influenza pandemic of 1918.  Finally, we will undertake “Worst case” scenario experiments using inferred estimates for highly contagious and lethal new variant strains of H5N1, for example.
Task 3.  Develop plan to operationalize prototype tool
As part of the proposed effort, we will develop a coherent and comprehensive plan for operationalizing the prototype tool. While the proposed effort will deliver a fully-functioning tool capable of being run in one of several modes and with a variety of actionable output, several additional steps are required to transition the codes from research to operations. We believe that the spiral model for software development is particularly appropriate here (Figure 12). On timescales of approximately one year we anticipate releasing major new iterations that are the result of well-defined design goals, reviewed by the model’s users. An important aspect of this concept is the allowance for incremental releases of the product followed by incremental refinement each time around the spiral. Importantly, we will incorporate risk management throughout all phases to ensure that our ultimate goal is achieved. 
Task 3.1 Investigate existing technologies
A fully operational tool should take advantage of the latest, most stable and mature technologies while also being compliant with current DOD regulations and limitations. Therefore, the first step in operationalizing the tool involves a careful assessment of existing technologies, and, particularly, those that are currently used, or desired by DOD. Of particular relevance are the technologies that are being produced via the BSV Ecosystem.
Task 3.2  Conduct discussions with likely DOD Users
As part of our current DTRA/NCMI-funded project, we have made presentations and solicited feedback from a range of agencies with potential interest in this tool. AFHSC, of course, represent a natural source of users since the tool has been carefully tailored to maximize the value of DMSS data. Additional talks with NCMI, BARDA, and OSD have also resulted in positive feedback. 
Task 3.3  Develop detailed plan for operationalizing the tool 
After evaluating existing technologies and discussing with the potential user-base, we can then produce a comprehensive plan for operationalizing the tool. This would form the basis for a follow-on effort to the proposed work. 
Task 4.  Project Reporting and Meetings
SAIC, with support from PSI, will coordinate the Project Kick-off meeting and Quarterly Teleconferences.  SAIC, with support from PSI will lead a 6 month Technical Review and a Final Program Review to be held during the final 30 days of the contract period.  SAIC will submit monthly reports of progress toward agreed upon milestones and a final report at the conclusion of the contract.  The monthly progress reports shall include as a minimum the following information:
· Status of work accomplished for each task, 
· Summary of deliverables for the reporting period, 
· Major problems areas (real and potential), and summary of any meetings, teleconferences
· Monthly labor charges by labor category in addition to the budget profile, 
· Planned / Actual expenditure profile,
· Monthly / Cumulative expenditures,
· Estimate at completion / Underrun/overrun status
3.4 Technical Challenges
 Most of the modeling framework for the proposed work has already been developed. Currently as part of an existing contract with DTRA/NCMI, we are adding severity element to the model. A significant portion of the proposed work will involve coupling the JSTO data stream to the model. However, we believe this will be straightforward. Our proposed model developments are feasible and our code was recently parallelized so that as we expand to a larger number of bases, we can run cases using proportionately more processors. 

4.0 Schedule
The overall program schedule is shown in Figure 13.  As currently planned, this program provides a continually improving understanding of the threat expected and the vulnerability thereto for the dust ingestion problem.[image: ]
Figure 12. Proposed software development process using a spiral model. 

During the first quarter of the proposed work, we will complete a base-level simulation module, capable of assimilating a range of data products from JSTO, including DMSS data. During the second quarter, we will validate the model using retrospective studies of the 2009 pandemic, as well as 2010-11 season and earlier seasonal epidemics (2001-08). During the third quarter, we will complete the incorporation and testing of mitigation strategies modules. These will include both the potential benefits of a rolling vaccination campaign as well as a variety of quarantine procedures, narrowly tailored to the unique demographic factors intrinsic to US bases/personnel. Finally, in the fourth quarter, we will apply the prototype tool to “what if” scenarios ranging from 2009-like outbreak to potentially catastrophic H5N1 release.  We will also present the results and inferences to DTRA and affiliated agencies and submit a scientific manuscript outlining the main components of this work to a peer-reviewed journal.
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Figure 13.  One-year schedule for completing the tasks outlined in Section 3, culminating in the production of a prognostic prototype tool for seasonal and pandemic influenza.

5.0 Satisfaction of Evaluation criteria
The proposed program meets the stated evaluation criteria of the BAA.  In terms of Scientific / Technical Merit the effort makes innovative and creative use of data collected and curated over the last decade by AFHSC and the development of a sophisticated, yet tractable prototype tool.  In terms of the Value to Program Goals, the proposed approach both develops our understanding of the transmission dynamics within military populations, but also delivers a prototype tool that can be used within the BSV Ecosystem. By providing several points of entry into the model results (summary slides and web-based interactive tools), we will demonstrate the efficacy of the underlying technology without at this point tying the tool to a specific product. In terms of Program Capabilities, the proposed effort has demonstrated that the past performance, key personnel, and facilities of the organizations involved and the background, experience and skills of the key personnel as demonstrated by their performance on efforts similar to that proposed reduces risk to the government.  Finally, the proposed labor allocation and the separately provided cost proposal demonstrate both Cost Realism and Reasonableness.
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